English | 中文
整编了目前北半球数量最多的年平均地温(1002个)和活动层厚度(452个)地面观测数据,利用四种统计学习模型融合这些地面观测与多源遥感等数据产品,集合模拟得到了代表2000-2016年北半球多年冻土区年平均地温、活动层厚度、多年冻土发生概率和多年冻土水热分带数据集,空间分辨率为1公里,验证表明具有更高的精度。可为北半球多年冻土区的工程规划、设计、环境模拟与评价等提供数据支持,也可作为北半球多年冻土现状的数据基准,评估未来多年冻土变化及其影响。
本数据集包括2010、2015和2020年间,中亚地区五国(哈萨克斯坦、吉尔吉斯斯坦、塔吉克斯坦、土库曼斯坦和乌兹别克斯坦)的植被覆盖度(FVC)数据。该数据由MODIS-NDVI数据集(产品编号MOD13A2.006),根据干旱区植被盖度与NDVI之间的经验关系计算得到。该产品时间分辨率为1年,空间分辨率1 km。算法从当年所有观测数据中,以低云、低探测角度和最高NDVI值为标准,选择最佳的可用像元值,并进行换算。
本数据采用Chen et al. 2017 JHM研究的方法,利用MYD11C3.006和MOD11C3.006两种产品计算得到全天空的地表温度结果,具体计算程序见本数据集的Global_monthly_LST.m。数据格式为*.mat, Global_monthly_LST.m程序给出了实例如何读取该数据。该数据空间分辨率为0.05度,网格中心的经纬度信息分别保存在latitude.mat和Lonitud.mat,由于内陆湖泊、水体的发射率反演的问题,本数据将所有内陆湖泊和水体的地表温度给了NaN值,具体采用的mask见mask.mat文件。经过与全球156个站点观测的LST的验证,总体RMSE为2.69k,mean bias为0.4K,在干旱和半干旱地区的RMSE为2.62K, mean bias为0.94.K.
吉尔吉斯斯坦西天山Kara-Batkak冰川气象站(42°9'46″N,78°16'21″E,3280m)。 观测数据包括逐时气象要素(小时雨量(mm)、瞬时风向(°)、瞬时风速(m/s)、2分钟风向(°)、2分钟风速(m/s)、10分钟风向(°)、10分钟风速(m/s)、最大风速时风向(°)、最大风速(m/s)、最大风速时间、极大风速时风向(°)、极大风速(m/s)、极大风速时间、分钟内极大瞬时风速风向(°)、分钟内极大瞬时风速(m/s)、气压(hPa)、气压最高(hPa)、气压最高出现时间、气压最低(hPa)、气压最低出现时间)。 气象观测要素,经过积累和统计,加工成气候资料,为农业、林业、工业、交通、军事、水文、医疗卫生和环境保护等部门进行规划、设计和研究,提供重要的数据。
全面估算了1132个大于1 km2湖泊的水量变化。总的来说,1976至2019年间,湖泊水储量增加了169.7±15.1 Gt(3.9±0.4 Gt yr-1),主要发生在内流区(157.6±11.6或3.7±0.3 Gt yr-1)。1976至1995年间,湖泊水量显示减少(-45.2±8.2Gt或-2.4±0.4Gt yr-1),但在1995至2019年间,大幅增加(214.9±12.7Gt或9.0±0.5Gt yr-1)。2010至2015年间,水量增速减缓(23.1±6.5 Gt或4.6±1.3 Gt yr-1),随后在2015至2019年间再次出现高值(65.7±6.7 Gt或16.4±1.7 Gt yr-1)。在1976-2019年间,冰川补给湖水量增加(127.1±14.3 Gt)远远高于非冰川补给湖(42.6±4.9 Gt),这也与冰川补给湖数量多,面积广有关。另外,封闭湖水量增幅(161.9±14.0 Gt)大大高于外流湖(7.8±5.8 Gt)。
本数据为阿姆河上游支流卡菲尼干河水文站水文资料。该站为中国气象局乌鲁木齐沙漠气象研究所和塔吉克斯坦国家科学院水问题水能与生态研究所、塔吉克斯坦水文气象局合作建设。该数据可以用于中亚山区水资源评估等科学研究和水利工程等服务。资料时段:2019年11月3日至2020年12月3日。资料要素:逐小时流速(m/s)、逐小时水位(m)和逐小时降雨量(m)。站点位置:37°36′01″N,68°08′01″E,420m 一、300W-QX河流流速、水位观测仪 (一)流速参数: 1供电电压 12(9~27)V(DC) 2工作电流 120(110~135)mA 3工作温度(-40 ~85) °C 4测量范围 (0.15 ~20)m/s 5测量精度 ±0.02m/s 6分辨率 1mm 7探测距离 0.1~50 m 8安装高度0.15~ 25 m 9采样频率 20sps (二)水位参数: 1测量范围 0.5~20 m 2测量精度 ±3 mm 3分辨率 1 mm 4重复性 ±1mm 二、SL3-1翻斗式雨量传感器 1承水口径 ф200mm 2测量降水强度 4mm/min以内 3测量最小分度 0.1mm降水量 4最大允许误差 ±4%mm 三、流速、观测仪数据获取的频率:传感器每隔5S测量一次流速和水位数据 四、小时平均流速计算:小时平均流速和水位数据由一小时内所有每隔5S测量的流速和水位数据取平均计算得出 五、水位数据中大量出现的0值的说明:水位数据中0值是供电不足引起传感器断电重启,初次启动第一条数据是0,导致小时平均值出现0。经2020年7月26日供电改造后,数据恢复了正常,2020年9月底又开始出现供电不足,经2020年12月25日二次供电改造,数据恢复正常 六、水位监测情况进行说明(如7358行,2020/11/3 16:00,最高水位6.7m,最低水位为0m,如何解释?另,最高水位的最大值是6.7m,数据中多次出现这个最高水位的值,似乎显示了6.7m是监测数据的极限值,实际情况是否如此? ):6.7m是设置的初始传感器距离河床底部高度,出现6.7m是传感器刚启动时候的异常数据,是设备供电不足导致断电重启引起传感器重启,初次启动出现这种异常值,经2020年12月25日供电改造后,数据恢复了正常
基于1980-2019年青藏高原及附近105个气象站点的气象数据(数据源于中国气象局数据国家气象科学数据中心)计算含氧量,发现含氧量和海拔显著线性相关,y=-0.0263x+283.8,R2=0.9819。因此基于DEM数据栅格计算得到含氧量分布图。由于青藏高原地区自然环境的限制,相关定点观察机构较少,本数据可在一定程度上反应青藏高原地区含氧量的分布情况,对青藏高原人类生存环境等相关研究有一定的借鉴意义。
本数据集以大量的地面实测草地地上生物量数据为基础,以1980s中国植被类型图划分出温性草地类型,借助Google Earth Engine平台上的Landsat遥感数据,在不同草地类型分别构建了草地地上实测生物量-遥感数据的随机森林模型,在验证可靠的基础上,对1993~2019年间逐年的草地地上生物量进行了估算,从而形成了1993~2019年中国北方温性草地地上生物量的逐年空间数据集。地上生物量定义为单位面积内地面以上实存生活的植被有机物质总量。已对原有栅格值乘以系数100,单位:0.01克/平方米(g/m²)。本数据集可为中国北方温性草地资源、生态环境的动态监测和评价提供科学基础。
大气海洋高频非潮汐去混频产品(简称去混频产品)是GRACE和GRACE-FO重力卫星解算地球时变重力场的关键背景模型之一。目前,国内外重力卫星反演团队均依赖于德国地学中心定期发布的去混频产品AOD1B,该产品的输入数据主要源自欧洲中长期气候预报中心(ECMWF)发布的大气驱动场。我们基于ECMWF最新发布的ERA5大气再分析驱动场和改进的大气质量积分算法,独立研制了一套大气去混频产品HUST-ERA5,并于国内外首次实现了1小时的时间分辨率,球谐展开为100阶,覆盖2002年至今长达19年的时间跨度(重力卫星的完整生命周期),但需要注意的是,本产品目前仅包含大气分量。具体的,本产品所采取的ERA5数据集是当前最高时空分辨率气象再分析数据集之一,其水平分辨率大约为0.25度,垂直分辨率高达137层,时间分辨率由6小时大幅提升至1小时。此外,本文不仅联合垂直积分和水平积分实现了国际最新AOD1B第六版的完整计算过程,并且通过真实重力场延拓方法进一步改进了物理模型、利用温湿插值方法进一步精化了垂直分层,该改进算法用于本产品的计算。通过多组对比实验证明,HUST-ERA5在3小时分辨率尺度上完全达到了国际AOD1B第六版的精度水平,并且在长期稳定性上呈现更优的表现。在1小时尺度上,HUST-ERA5反映在重力场反演中可进一步削弱星间测距误差,对于下一代重力卫星设计具有重要的参考意义。此外,HUST-ERA5去混频产品亦可广泛运用于低轨卫星定轨以及超导重力仪大气改正等等领域。
本数据集包括南极冰盖花杆、冰(雪)芯/雪坑、自动气象站高度仪和探地雷达观测的日平均、年平均和多年平均表面物质平衡数据。数据来自已发表的文献,数据报告及国际数据共享平台,经质量控制后,形成了到目前为止最为完善的南极冰盖表面物质平衡日、年和多年分辨率的数据集,其中年分辨率表面物质平衡数据跨度过去1000年。该数据集主要用于冰川学、气候学及水文学等学科领域,特别地可用于南极表面物质平衡时空变化定量分析,气候模式验证,驱动冰盖模式和粒雪化模型等等。
1970年土地利用由MSS影像目视解译而成,整体解译精度达90%以上,土地分类按照中国科学院土地利用分类系统进行,具体分类细则请阅读数据说明文档。 2005年和2015年两期数据集从欧洲太空局 (ESA) 全球土地覆被类型数据获取,包括中亚五国(哈萨克斯坦、吉尔吉斯斯坦、塔吉克斯坦、土库曼斯坦和乌兹别克斯坦)和中国新疆,该数据集有22种土地利用类型,采用IPCC土地利用分类系统,具体分类细则请参阅说明文档。
中亚干旱区极端降水指数长时间序列数据集包含了49个站点的10项极端降水指数长时间序列数据。该数据集以全球日气候历史数据网络(GHCN-D)的逐日降水数据为基础,经过数据质量控制和异常值剔除,选取符合极端降水指数计算的站点,计算了气候变化检测和指数联合专家组(ETCCDI)定义的10项极端降水指数(PRCPTOT、SDII、RX1day、RX5day、R95pTOT、R99pTOT、R10、R20、CWD、CDD)。其中,有15站时间序列为1925-2005年。本数据集可以作为在全球气候变化下中亚干旱区极端降水事件发生频率和趋势探测分析的材料,也可以作为基础数据来探索极端降水事件对农牧业生产和生命财产损失的影响。
火狐浏览器
谷歌浏览器
联系方式
友情链接
帮助信息
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件