English | 中文
本数据集是在东绒布冰川通过野外架设气象站实测获得的气象观测资料,以excel形式存储,内含2个数据列表:Surface_energy_budget和Cycle。Surface_energy_budget数据集包括四分量辐射,风速风向温度湿度(1.5 m和2.5 m)。与辐射相关的气象要素为:向下短波、反射短波、向下长波、向上长波、净短波、净长波、净辐射、感热、潜热、地下传导热、云量(cloud index_根据Faiver et al. 2004, JGR)、南亚季风指数、反照率;Cycle列表,是5-7月气象要素的日循环值;第1行字段名称前缀“1”、“2”和“3”表示观测期的三个时段,分别是:1 May-28 May、29 May -16 June、17 June - 22 July。
本数据集来源于书籍:《横断山区冰川》,该书籍的归属于青藏高原横断山区科学考察丛书,主编为李吉均,副主编为苏珍,指导单位为中国科学院地理研究所。该书所指考察队为中国科学院青藏高原综合考察队,出版社为科学出版社。由于横断山一些地区,降水充沛,积雪深厚,雪崩、风吹雪和异常降雪成为一种常见的自然灾害,给当地居民的工作与生活造成了极大的伤害,本书就此对于横断山地区的雪害进行了详细的记录。该数据包含了2张工作簿和2张图片,分别是雪害状况及危害程度统计表、雪崩的区域特征、川西滇北藏东南地形切割程度图、横断山雪崩危害范围图。
该数据集记录了全国各地区人均GDP和增长率及排序(2010-2018)的统计数据,数据是按年份进行划分的。数据整理自青海省统计局发布的青海省统计年鉴。数据集包含8个数据表,各数据表结构相同。例如2017-2018年的数据表共有4个字段: 字段1:地 区 字段2:数 量 字段3:位 次 字段4:增长率
横断山冰川的消融观测,主要在贡嘎山东坡海螺沟冰川和贡嘎山西坡大、小贡巴冰川上进行。另外,在玉龙山东坡白水1号冰川上也作了一些消融观测。从上述两条山脉四条冰川的消融观测来看,还是有一定的区域代表性,使它们反映出横断山冰川消融的基本情况。本数据集记录了不同时间不同地点观测点的冰川消融数据:1982 年6-8月,玉龙山东坡白水1号冰川海拔4200m、4 600m和4800m三个高度的冰面消融观测数据。1982 年8月27日至1983 年8月底,贡嘎山东坡海螺沟冰川舌部不同高度的全年实测数据。1982年7月12日至1983年8月6日,贡嘎山西坡贡巴冰川消融观测数。
(1)本数据集是基于文献的青藏高原碳通量数据集,包含空气温度、土壤温度、降水、生态系统生产力等参数。(2)该数据集以野外涡度相关实测数据为基础,采用国际上公认的涡度相关数据标准处理方法,基本流程包括:野点剔除-坐标旋转-WPL校正-储存项计算-降水同期数据剔除-阈值剔除-异常值剔除-u*校正-缺失数据插值-通量分解与统计。本数据集还包含了基于涡度相关数据集标定后的模型模拟数据。(3)该数据集已经过数据质量控制,数据缺失率为37.3%,缺失数据已采用插值方式补充。(4)该数据集对认识高寒湿地碳汇功能具有科学价值,也可以用于机理模型的矫正和验证等。
该数据集为可可西里地区冰川分布状况记录,包含了可可西里地区各山地现代冰川分布状况,可可西里地区各流域现代冰川分布, 可可西里地区不同山地高度段内现代冰川分布状况三个表格。地处青藏高原腹地的可可西里地区,平均海拔在5000m以上,气候严寒。根据中国冰川目录和作者在1/10万地形图上重新统计,全区发育现代冰川437条,覆盖面积达1552.39平方千米,冰储量为162.8349立方千米,成为本区众多河流湖泊水体的重要补给源泉。通过该数据集可以更加深入了解该区冰川分布规律等。
全面了解青藏高原多年冻土发生的变化,包括年平均地温(MAGT)和活动层厚度(ALT)的变化,对气候变化引起的多年冻土变化工程的实施具有重要意义。 青藏高原多年冻土活动层厚度和范围模拟数据集,参考2000-2015年CMFD再分析数据及中国气象局气象观测资料、1公里数字高程模型、地理空间环境预测因子、结合冰川和冰湖、钻孔数据等,利用统计和机器学习(ML)方法模拟了青藏高原多年冻土层磁通量和磁通量的当前和未来变化,得到RCP2.6、RCP4.5和RCP8.5三种不同浓度情景下2000-2015、2061-2080年平均地温(MAGT)和活动层厚度(ALT)范围数据,分辨率为0.1*0.1度。 模拟结果表明,利用统计和ML相结合的方法模拟冻土热状态所需的参数和输入变量较少,可以有效地了解青藏高原冻土对气候变化的响应。
采用计算草地实际净初级生产力,CASA模型是一种光能利用率模型,生产力的估算主要由植物吸收的光合有效辐射(APAR)与光能转化率(ε)2个变量决定。植被所吸收的光合有效辐射(APAR)取决于太阳总辐射和植被对光合有效辐射的吸收比例;采用TEM(Terrestrial Ecosystem Model)模型计算草地潜在生产力,首先计算草地的总初级生产力(GPP),再计算植物自养呼吸(Ra),最后得出草地净初级生产力(NPP)。TEM模型是气候驱动的生产力模型,所需的参数有:植被类型、土壤质地、土壤水分、潜在蒸散、太阳辐射、云量、降水、温度和大气CO2浓度;利用随机森林算法(RF)计算青藏高原草地潜在地上生物量,预测变量包含气候、土壤、地形等14个变量。气候变量包含生长季(5-9月)平均日较差、生长季总降水、生长季平均温度和非生长季(前一年10 - 当年4月)平均日较差、非生长季总降水、非生长季平均温度。地形变量包括高程、坡度、坡向。土壤变量包含土壤质地(砂、粉、粘土含量)、土壤pH值和土壤有机碳。 实际净初级生产力和潜在净生产力数据年限为2000-2017;潜在草地地上生物量数据年限为(2014-2018)。
夜间灯光遥感(以下简称夜光)已经成为反映包括社会经济和能源消耗在内的人类活动的一个越来越重要的指标。现有夜光数据集(如美国国防气象卫星计划(DMSP)和国家极地轨道可见光红外成像辐射计(NPP))在时间范围和数据质量上都很有限。因此我们提出了一种夜间灯光卷积长短期记忆(NTLSTM)网络,并将该网络应用于生长出世界上第一套1984 - 2020年中国的人工夜间灯光数据集(PANDA)。模型与原始图像的模型评估显示,平均均方根误差(RMSE)达到0.73,决定系数(R2)达到0.95,像素级的线性斜率为0.99,表明生成产品的数据质量较高。模型结果可以很好地捕捉到新建成区的时间趋势。社会经济指标(建成区面积、国内生产总值、人口)与PANDA的相关性比现有的所有产品都更好,这表明它在寻找不同阶段夜间灯光变化的不同控制方面有更好的潜力。此外,PANDA描绘了不同的城市扩展类型,在代表道路网络方面胜过其他产品,并在早期提供了潜在的夜光景观。
本数据集为青藏高原区域2016年日分辨率0.02° x0.02° BRDF 核驱动模型核系数数据集。采用耦合地形因子的多源遥感数据协同反演的BRDF\反照率模型,并引入先验知识进行质量控制,联合极轨卫星数据MODIS反射率和静止卫星葵花8-AHI地表反射率数据反演时空连续的日分辨率的高精度BRDF。MODIS地表反射率数据及AHI天顶反射率数据集为官方网站下载,经过配准、大气校正等处理,以5天为周期合成日分辨率BRDF。相较于同类产品,,该BRDF合成周期最短,且考虑了地形效应,对快速变化地表特征的捕捉更具有优势,且时空连续性更好。可有效支撑j反射率角度效应订正、或用于与BRDF相关地表参数的高精度估算。
该数据集包含纳木那尼冰川(北支)2008-2018年的年物质平衡数据,侧碛和末端自动气象站2011-2019年日气象数据及冰面上2018-2019年的月均气温和相对湿度数据。 冰川物质平衡数据观测时间为每年9月底或10月初,采用冰面测杆和雪坑结合的方法进行观测,获取测杆点的物质平衡数据,然后计算整条冰川的年净物质平衡(具体方法见参考文献)。 2台自动气象站(AWSs,Campbell公司)分别安装在纳木那尼冰川侧碛和末端。AWS1观测时间为2011年10月1日-2018年11月30日,观测数据包括气温(℃)、相对湿度(%)、太阳辐射(W/m2),仪器半小时记录一次气象资料。AWS2观测时间为2010年10月19日-2018年11月30日,观测数据包括风速(m/s)、大气压(hPa)、降水 (mm),仪器每小时记录一次气象资料。首先剔除原始记录中的少量异常数据,然后计算这些参数的日值。数据质量方面:原始数据质量较好,缺失较少。 两个温湿度探头(型号:Hobo MX2301)于2018年安装于冰面,半小时记录一次数据。将半小时数据处理为月均值。原始数据质量较好,没有缺失。 数据以excel文件存储。 该观测资料可以为研究喜马拉雅西段北坡气候、冰川、水资源及其之间的关系提供重要的基础数据,可供研究气候、水文、冰川等的科研工作者使用。
现代花粉与植被和气候的关系是利用花粉定性解释和定量重建过去植被和气候的重要参考依据。提取湖泊沉积物中的花粉组合所蕴含的古植被和古气候信号,需要组建一个高质量的湖泊表层沉积物现代孢粉数据集。然而,青藏高原已有的湖泊表层沉积物花粉数据集并不能很好地代表其植被类型和气候梯度,仍存在空白区域,如青藏高原中东部的高寒草甸区尚缺乏现代湖泊花粉数据,影响了重建研究的可靠性。 为了构建高寒草甸区样点空间分布均匀的现代孢粉数据集,作者于2018年7月~8月采集了青藏高原中部和东部117个湖泊的表层沉积物样品。每个样品选取约10克(湿样)采用常规酸碱法和过筛法(7 μm)提取花粉。每个花粉样品至少鉴定、统计500粒陆生植物花粉粒。 本高寒草甸现代花粉数据集花粉组合以莎草科花粉为主(Cyperaceae;平均值68.4%,最大值95.9%),其他草本植物花粉如禾本科(Poaceae;平均值10.3%,最大值87.7%)、毛茛科(Ranunculaceae;平均值4.8%,最大值33.6%)、蒿属(Artemisia;平均值3.7%,最大值24.5%)、菊科(Asteraceae;平均值2.1%,最大值33.6%)等为常见花粉类型。柳属(Salix;平均值0.4%,最大值5.3%)为主要的灌木植物花粉,而乔木植物花粉含量低(平均值0.9%,最大值5.8%),主要包括松属(Pinus;平均值0.3%,最大值1.8%)、桦属(Betula;平均值0.1%,最大值0.9%)和桤木属(Alnus;平均值0.1%,最大值0.7%)。花粉组合尽管受到远源花粉(如乔木花粉)的影响,但仍能很好地代表高寒草甸植物群落组成。 本数据集除包含花粉类型的原始统计数据和百分比数据,也包括每个采样点现代气候数据。每个样点现代气候数据采用中国区域地面气象要素驱动数据集(1979-2018;0.1°空间分辨率)中最近栅格数据代替,并计算样点的年降水量(Pann)、年均气温(Tann)、最冷月均温(Mtco)和最热月均温(Mtwa),用于构建花粉-气候校准集。
火狐浏览器
谷歌浏览器
联系方式
友情链接
帮助信息
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件