English | 中文
中亚的生态系统脆弱,自然灾害频发,水资源短缺,冰川加速融化,是气候变化敏感区之一。在评估该地区的脆弱性、影响性和适应性时,急需高分辨率的气候预估数据集。为此,我们对来自CMIP5的三个偏差订正后的全球气候模式(MPI-ESM-MR、CCSM4和HadGEM2-ES),在中亚地区开展了9千米的动力降尺度,继而生产了一个中亚高分辨率气候预估数据集,将其命名为HCPD-CA(High-resolution Climate Projection Dataset in Central Asia)。它的历史时段是1986-2005,未来时段是2031-2050,排放情景是RCP4.5。这个数据集有4个静态变量和10个常被用于驱动生态和水文模型的气象要素。静态变量有地形高度(HGT, m)、土地利用类型(LU_INDEX, 21 categories)、陆地水体(LANDMASK, 1代表陆地, 0代表水体)和土壤类型(ISLTYP, 16 categories)。10个气象要素是日降水量(PREC,mm/day)、2米日平均/最高/最低温(T2MEAN/T2MAX/T2MIN,K)、2米日平均相对湿度(RH2MEAN,%)、10米日平均维向和经向风(U10MEAN/V10MEAN,m/s)、日平均向下短波/长波辐射(SWD/LWD,W/m2)和日平均地表气压(PSFC,Pa)。评估结果显示:这个数据产品在描述中亚各个气象要素的平均态上有很高的质量,这保证了其可用性。未来气候变化的主要特征是:升温剧烈(年均温升高1.62-2.02℃),向下短波和长波辐射显著增强,其他气象要素变化很小。HCPD-CA数据集可被用于评估未来气候变化对中亚的多方面影响,特别是在生态和水文系统上。
观测数据来自中国气象局乌鲁木齐沙漠气象研究所于2017年建设的帕米尔高原红其拉甫梯度气象观测试验站,包含各气象要素的梯度数据。资料时间段为2019年11月18日—2021年10月8日,运用TOA5合并工具及MS Office等处理所得*.xlsx格式,数据质量较好,此数据可为开展帕米尔高原和中巴经济走廊地表辐射与能量收支规律研究提供支持,为陆面过程提供参考依据。 红其拉甫气象站在我国帕米尔高原,海拔4600m,靠近中国与巴基斯坦边境,资料及其珍贵。
地表土壤水分(SSM)是了解地球表面水文过程的关键参数。长期以来,被动微波(PM)技术一直是在卫星遥感尺度上估算SSM的主要选择,而另一方面,PM观测的粗分辨率(通常>10 km)阻碍了其在更细尺度上的应用。虽然已经提出了定量研究,以缩小基于卫星PM的SSM的规模,但很少有产品可供公众使用,以满足1km分辨率和全天候条件下每日重访周期的要求。因此,在本研究中,我们在中国开发了一种具有所有这些特征的SSM产品。该产品是通过在36 km处对基于AMSR-E和AMSR-2的SSM进行降尺度生成的,涵盖了2003-2019年间两台辐射计的所有在轨时间。MODIS光学反射率数据和在多云条件下填补空白的每日热红外地表温度(LST)是降尺度模型的主要数据输入,以实现SSM降尺度结果的“全天候”质量。4月至9月期间,这一开发的SSM产品的每日图像在全国范围内实现了准完全覆盖。在其他月份,与最初的每日PM观测值相比,开发产品的全国覆盖率也大大提高。我们根据2000多个专业气象和土壤水分观测站的现场土壤水分测量结果对该产品进行了评估,发现该产品的精度在晴空到多云的所有天气条件下都是稳定的,无偏RMSE的站平均值在0.053 vol到0.056 vol之间。此外,评估结果还表明,开发的产品在1km分辨率下明显优于广为人知的SMAP Sentinel(主被动微波)组合SSM产品。这表明,我们开发的产品在改善未来水文过程、农业、水资源和环境管理相关调查方面可能带来的潜在重要效益。
吉尔吉斯斯坦西天山Kara-Batkak冰川气象站(42°9'46″N,78°16'21″E,3280m)。 观测数据包括逐时气象要素(小时雨量(mm)、瞬时风向(°)、瞬时风速(m/s)、2分钟风向(°)、2分钟风速(m/s)、10分钟风向(°)、10分钟风速(m/s)、最大风速时风向(°)、最大风速(m/s)、最大风速时间、极大风速时风向(°)、极大风速(m/s)、极大风速时间、分钟内极大瞬时风速风向(°)、分钟内极大瞬时风速(m/s)、气压(hPa)、气压最高(hPa)、气压最高出现时间、气压最低(hPa)、气压最低出现时间)。 气象观测要素,经过积累和统计,加工成气候资料,为农业、林业、工业、交通、军事、水文、医疗卫生和环境保护等部门进行规划、设计和研究,提供重要的数据。
温湿指数(THI)1973年由奥利弗(J.E.Oliver)提出,其物理意义是湿度订正以后的温度。它考虑了温度以及相对湿度对人体舒适度的综合影响,是衡量区域气候舒适度的一项重要指标。在参考已有关于生理气候评价指标分级标准的基础上,结合青藏高原自然地理特征,面向青藏高原人居环境适宜性评价需求,研制了青藏高原(3000米以上)温湿指数及其适宜性分区结果(包括不适宜、临界适宜、一般适宜、比较适宜与高度适宜)。
该数据集主要包括北温带湖泊在1985-2020年间4个时段的结冰观测频率值(ICO),以及湖泊所在位置、面积、高程等信息。其中,4个时间段分别为1985-1998(P1)、1999-2006(P2)、2007-2014(P3)以及2015-2020(P4),目的是提高计算时段内的“有效观测”次数,进而提高准确度。4个时段的ICO由各个时段内所有Landsat影像统计的“结冰”次数与“有效观测”次数的比值计算,其他的湖泊信息通过表格中的“Hylak_id”列与HydroLAKEs数据集相对应。此外,该数据仅保留了P1-P4均观测有效,且面积大于1平方千米的湖泊,约为3万个。该数据集可以反映近几十年来湖泊结冰情况对气候变化的响应。(详见论文)
在国家重点研发计划“冰冻圈和极地环境变化关键参数观测与反演”第一课题“冰冻圈关键参数多尺度观测与数据产品研制“的资助下,中国科学院青藏高原研究所张寅生课题组发展了青藏高原地区降尺度雪深产品。青藏高原积雪深度降尺度数据集来源于积雪概率数据和中国雪深长时间序列数据集的融合结果,采用新发展的亚像元时空分解算法对原始0.25度的积雪深度数据进行时空降尺度,得到0.05度逐日积雪深度产品。通过降尺度前后的雪深产品精度评估的对比,发现降尺度后雪深产品的均方根误差由原产品的2.15 cm减少到了1.54 cm。 青藏高原积雪深度降尺度数据集(2000-2018)的产品信息细节如下。投影为经纬度,空间分辨率0.05 度(约5公里),时间范围为2000年9月1日-2018年9月1日,为Tif格式文件,命名规则为:SD_YYYYDDD.tif,其中YYYY代表年,ddd代表儒略日(001-365)。积雪深度(SD),单位:厘米(cm)。空间分辨率为0.05度。时间分辨率为逐日。
近年来,来源于微生物细胞膜脂的支链甘油二烷基甘油四醚(brGDGTs)对环境参数(温度和pH等)敏感,被广泛用于古环境的定量重建当中。作者利用青藏高原湖泊表层沉积物,结合国内已发表的其他湖泊表层沉积物中的brGDGTs重新建立brGDGT与大气温度的转换方程。通过收集达则错湖泊全年的悬浮物并进行brGDGTs分析,重建湖水中brGDGTs在不同层位的含量变化。结合现代观测结果以及新的校正方程,利用夏达错湖泊沉积物中brGDGT的结果,重建青藏高原西部过去2000年的大气温度变化,这一结果为高原未来利用brGDGTs重建温度提供重要的理论参考。
该数据集记录了1988年,2012年度青海省海东地区草地类型面积、载畜量统计数据,数据按照草地类组型代号分类统计,如:Ⅰ代表高寒干草原类、Ⅱ代表山地干草原类、Ⅲ代表高寒荒漠类、B代表中禾草组、J代表灌木组等,具体的草地组类型代号及其对应的含义见数据集中的“青海省草地类组型代号说明.pdf”。数据整理自青海省草原总站与1988年和2012年发布的《青海省草地资源统计册》。数据集包含3个数据表,分别为:海东地区各类型草地面积、载畜量统计数据(1988),海东地区草地类型面积、载畜量统计数据(2012)和青海省草地类组型代号说明。数据表结构相似。例如海东地区草地类型面积、载畜量统计数据(2012)表共有8个字段: 字段1:类型代号 字段2:草地类型名称 字段3:草地面积 字段4:草地可利用面积 字段5:平均单产鲜草 字段6:平均单产可食鲜草 字段7:载畜量 字段8:草地型等
数据包括青藏高原江错湖泊氧同位素数据和岩心年代数据,第一列:年龄,第二列:氧同位素值;该数据记录了过去84-2015年氧同位素变化。
本数据集为全球高精度高程控制点数据集,包含各个高程控制点地理定位,高程,采集时间等信息。 从卫星激光测高数据中提取的激光足印高程的精度受到许多因素的影响,如大气、有效载荷仪器噪声、激光足迹中的地形起伏等,导致精度不确定。该数据集通过评估标签和测距误差模型所构建的筛选准则对ICESat卫星从2003年到2009年的测高观测数据进行筛选提取,以期地形测图或依赖良好高程信息的其他科学领域提供高精度的全球高程控制点。经验证,平地(坡度<2°)、丘陵(2°≤坡度<6°)、山地(6°≤坡度<25°)区域的高程精度分别满足0.5m、1.5m、3m的精度要求。
在地球大数据科学工程专项时空三极环境项目第一课题“三极大数据共享与集成” (XDA19070100)资助下,中国科学院西北生态环境资源研究院车涛课题组利用机器学习方法结合多源雪深产品数据、环境因子变量及地面观测雪深数据等制备了北半球长时间序列逐日雪深数据集。 首先将人工神经网络、支持向量机和随机森林方法在积雪深度融合的适用性进行对比研究,发现随机森林方法在雪深数据融合上表现出较强优势。其次,利用随机森林方法,结合AMSR-E,AMSR2,NHSD和GlobSnow等遥感雪深产品及ERA-Interim和MERRA2等再分析资料格网雪深产品和环境因子变量等作为模型的输入自变量,用中国气象台站数据(945)、俄罗斯气象台站(620)、俄罗斯积雪调查数据(514)和全球历史气象网络逐日数据(41261)等43340个地面观测站点的雪深数据作为参考真值对模型训练与验证,在专项“地球大数据科学工程”提供的云平台上制备1980~2019年积雪水文年(上一年9月1日至本年度5月31日)的逐日格网雪深数据集。由于1980~1987年微波亮温数据为隔日数据,所以这段时间的数据会出现少量条带缺失现象。利用全球积雪模型对比计划及独立的地面观测数据进行验证,融合数据集的质量在整体上有所提升。利用地面观测数据及融合前的雪深产品对比来看,融合数据的决定系数(R2)从6种融合前产品中最高的0.23(GlobSnow雪深产品)提升至0.81,而相应的均方根误差(RMSE)和平均绝对误差(MAE)也减小至7.7 cm 和2.7 cm。
火狐浏览器
谷歌浏览器
联系方式
友情链接
帮助信息
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件