English | 中文
本数据集包含了青藏高原及周边地区(南亚:尼泊尔、不丹、印度、巴基斯坦、孟加拉、斯里兰卡、马尔代夫;中亚:土克曼斯坦、吉尔吉斯斯坦、乌兹别克斯坦、塔吉克斯坦、哈萨克斯坦、阿富汗斯坦;西亚:伊朗、伊拉克、阿塞拜疆、格鲁吉亚、亚美尼亚、土耳其、叙利亚、约旦、以色列、巴勒斯坦、沙特、巴林、卡塔尔、也门、阿曼、阿拉伯联合酋长国、科威特、黎巴嫩、塞浦路斯)的2017年二氧化硫、氮氧化物、PM2.5排放网格化清单。排放清单来源于IIASA网络公开的数据集,通过使用ArcGIS软件技术将排放清单处理为50km*50km的网格数据集,其质量可以保证。该数据可用于模型工作者对于第三极区域气候及空气质量的进一步研究。
本数据集包含了中国第三极地区(西藏、新疆、云南、青海)的2019年二氧化硫、氮氧化物、PM2.5排放网格化清单。排放清单来源于清华大学王书肖教授课题组排放清单数据库,通过使用ArcGIS软件技术将排放清单处理为1km*1km的网格数据集。排放计算的基础数据基于公开数据搜集、卫星观测数据、文献搜集等方式,以排放因子法进行计算,数据来自于国家统计局数据及其它行业统计年鉴。该数据可用于模型工作者对于第三极区域气候及空气质量的进一步研究。
在共享社会经济路径(SSP)5-8.5情景下4个CMIP6模式2015-2100年的模拟结果。选取标准为这四个模式水平分辨率均小于1°,且均有日数据。从原始模拟结果中提取了8个代表极端气候的变量,分别是日最高气温的极高值(TXx)、日最低气温的极高值(TNx)、日最高气温的极低值(TXn)、日最低气温的极低值(TNn)、连续干旱日数(CDD)、连续湿润日数(CWD)、降水强度(SDII)和强降水日数(R20mm)。数据时间分辨率为年,空间范围为青藏高原地区,时间范围为2015-2100年。
海冰表面积雪由于其高的反射率和低热导率,能够有效的调节海冰的变化(生长和消融),控制能量收支,是海冰厚度估算的重要参数。本数据集为2012-2020年(9月-4月)逐日的北极海冰表面积雪厚度数据。我们在原有的再分析重构模型(NASA欧拉海冰积雪模型)基础上,增加了一个融化过程,然后结合粒子滤波方法构建了北极海冰表面积雪厚度估算模型。利用ERA5提供的再分析数据(降雪、气温、风场)、OSI SAF提供的海冰漂移数据、NSIDC提供的海冰密集度数据驱动再分析重构模型获得模拟的积雪厚度,然后将遥感获取的积雪厚度数据同化到模型中得到结冰期(10月-4月)北极海冰表面积雪厚度数据。由于9月无遥感数据用于同化。因此,利用线性回归分析构建模拟积雪厚度与同化后积雪厚度的关系,得到9月份最终的积雪厚度数据。最后生成了2012-2020年(9月-4月)50 km分辨率的海冰表面积雪厚度数据。本数据集能有效的综合遥感数据和模拟数据的优势,与三种OIB数据均吻合良好(分别为NSIDC OIB Quick Look产品、NSIDC OIB L4级产品和NOAA提供的OIB产品),均方根误差分别为5.80 cm、4.61 cm和6.50 cm。本数据集能够为海冰厚度和体积的估算提供高精度的输入参数,有助于分析北极物质平衡和能量平衡,进一步推动气候模式的发展。
基于2019-2020年我国高分一号及二号数据,采用深度学习分类方法,结合人工目视解译修正,生产出青藏工程走廊冻融灾害分布数据。数据地理范围为青藏公路西大滩至安多段沿线40km范围。数据包括热融湖塘分布数据及热融滑坡分布数据。该数据集可为青藏工程走廊冻融灾害的研究工作及工程防灾减灾提供数据基础。 青藏公路西大滩至安多段沿线40km范围冻融灾害空间分布基于国产高分二号影像数据自制。首先,利用深度学习方法从高分二号数据中提取泥流阶地区块;然后,利用arcgis进行人工编辑。在制作过程中,规定操作人员严格遵守操作规范,同时由专人负责质量审查。
该数据集主要内容为青藏公路G109、青藏铁路以及新藏公路G219国道沿线地质灾害、路面病害以及桥涵病害调查数据集,调查时间为2020年8月12日--2020年8月19日,2021年7月26日--2021年8月15日。调查对象为南亚通道及喜马拉雅山区工程。调查的病害类型主要包括冻融诱发的地质灾害(落石、危岩体、泥石流冲沟及碎屑坡)、路面裂缝类病害、松散类病害、坑槽类病害、路基变形类病害以及桥涵病害等等。采用人工调查的方法,观察各类病害破损情况,按要求详细记录路面、桥涵以及地质灾害各种破坏类型的数量(范围)、破坏程度及所在位置。该数据集可为全面了解南亚通道及喜马拉雅山区工程冻融病害情况及相关研究提供依据。
1967-2020年湖水表面温度(LSWT, 下社站); 1994-2020年湖冰冰厚和和结冰期(下社站); 1956-2020年流域径流(布哈站); 1956-2020年水位(下社站); 1956-2020年湖泊面积 ( 根据2001-2020年Landsat数据提取的湖泊面积和实测的湖泊水位建立面积-水位关系,从而利用实测水位数据估算无Landsat影像年份的面积); 1958-2019年气温(刚察站); 1958-2019年降水量(刚察站)
冰盖表面融化是影响格陵兰冰盖物质平衡的主要原因,同时冰雪的反射率较高,冰盖表面融化会造成辐射能量收支差异,进而影响海-陆-气之间能量交换。高分辨率冰盖表面融化产品的生成,对研究格陵兰冰盖表面融化及其对全球气候变化的响应提供重要信息支撑。本数据集基于微波辐射计与光学反照率产品,对微波辐射计当日、冬季(12-次年2月)平均和1月平均进行波段合成,利用Gram-Schmidt方法将微波辐射计波段合成数据与MODIS GLASS反照率产品融合,使其空间分辨率从25 km提高至0.05˚。然后基于微波辐射计当日与冬季亮温差值的阈值法对降尺度结果提取格陵兰冰盖表面融化,得到1985年、2000年、2015年格陵兰冰盖表面0.05˚ 每日融化产品。该数据集0.05˚ 的空间分辨率高于目前国内外已发布数据集,凸显了辐射计和反照率数据对表面融化的响应,空间细节特征更加清晰,保持了原辐射计产品的动态范围,有效地抑制了辐射计噪声。该数据集的数据类型为整型,其中1代表融化,0代表未融化,255代表冰盖以外掩膜区域,数据集以“*.nc”格式存储。
此数据包含1992年-2020年时间段的中亚,南亚和中南半岛地区的空间分辨率为300m土地覆盖数据,包含10个一级类别,由原数据的二级类别合并而来。数据基于欧空局的1992年-2020年时间段地表覆盖产品 CCI-LC,对耕地、建设用地和水体等地类进行修正。基于清华大学全球土地覆被数据(FROM-GLC,30m栅格)、美国NASA的MODIS全球土地覆被数据(MCD12Q1,500m栅格)、美国地质调查局USGS的全球耕地数据(GFSAD30,30m)、日本全球林地数据的(PALSAR/PALSAR-2,25m)的一致区获取训练样本,应用谷歌地球数字引擎及其随机森林算法,对研究区待修正区域进行机器判别,获得修正的土地覆被产品。应用2019年和2020年的谷歌地球高清影像,对耕地、建设用地和水体变化区域的精度进行分层随机抽样验证,三种地类分别抽取了1200个、共计3600个,相比 CCI-LC数据,本修正产品在该变化区域的精度提升了11%到26%。
该数据集是刘勇勤课题组从2010年以来多次野外采样积累的数据汇总而成,包括青藏高原12个冰川的冰芯和雪坑微生物丰度数据(5409条记录)和38个冰川的溶解性有机碳和总氮数据(2532条记录,包括冰芯、雪坑、表面冰、表面雪和冰前径流等生境)。所采样的冰川覆盖范围广,气候条件多样,多年平均气温从-13.4℃(古里亚冰川)到2.9℃(朱溪沟冰川),多年平均降水量从76.9毫米(15号冰川)到927.8毫米(24K冰川)。这些数据可为研究冰川碳氮循环和全球变暖背景下冰川退缩对下游生态系统的影响提供基础数据。
本数据集提供我国北方80个GNSS地基站点历史积雪深度。数据集时间跨度为2013-2022年,空间范围覆盖25° ~ 55° N/70° ~ 140° E,时间分辨率为24小时、12小时和2小时(个别站点),空间分辨率代表站点周围约1000m2。数据集基于中国气象局和中国地震局建设的用于大气水汽探测和地壳形变监测的业务站点原始观测数据研制,通过构建一套适用于复杂地基站网的自动化数据处理框架,形成各站点“分别把脉”的积雪深度估算方案。 本数据集的生产是对我国现有地基GNSS观测业务站网数据潜在应用价值的提升。数据集具有较高的时间分辨率,且空间分辨率介于地面观测和格点数据之间,可提供一种新的检验数据源,同时,数据集也可应用于气象和水文等领域的相关研究及应用分析。
1) 青藏高原地面气象驱动数据集(2019-2020),包括地表温度(Land surface temperature)、地表降水率(Mean total precipitation rate)、下行短波辐射(Mean surface downward long-wave radiation flux)以及下行长波辐射(Mean surface downward short-wave radiation flux)4个气象要素。 2) 该数据集以ERA5再分析数据为基础,辅以MODIS NDVI、MODIS DEM、FY3D MWRI DEM数据产品。通过多元线性回归方法对ERA5再分析数据进行降尺度处理,最后通过重采样生成。 3) 青藏高原地面气象驱动数据集(2019-2020)各数据要素均以TIFF格式存储,时间分辨率包括(每日、每月、每年),空间分辨率统一为0.1°×0.1°。 4) 本数据方便不会使用.nc格式的此类同化数据的科研人员和学生使用。在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。
火狐浏览器
谷歌浏览器
联系方式
友情链接
帮助信息
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件