English | 中文
湖泊汇集上游流域的径流及其携带的泥沙和营养物质,是流域中物质迁移的重要“归宿”,因此湖泊水体和沉积物属性在很大程度上受湖泊流域的属性(如湖泊上游的气候、地形和植被条件)影响。本数据集根据数字高程模型提取青藏高原上1525个湖泊(面积从0.2到4503平方公里)的流域范围,计算了湖泊水体、地形、气候、植被、土壤/地质和人类活动等6方面的721个属性,是首套青藏高原湖泊流域属性数据集,可为青藏高原湖泊(特别是缺资料湖泊)研究提供基础数据。
本数据集是以UEA-CRU与UDEL提供的长时间尺度(1901-2016年)温度计算的冻结指数作为输入数据,通过Stefan经验公式计算雅鲁藏布江流域土壤冻结深度,并插值模拟输出的30年尺度平均土壤冻结深度数据集。本数据集是以UEA-CRU与UDEL提供的长时间尺度(1901-2016年)温度计算的冻结指数作为输入数据,通过Stefan经验公式计算雅鲁藏布江流域土壤冻结深度,并插值模拟输出的30年尺度平均土壤冻结深度数据集。
本数据集为TCA(Triple Collocation Analysis)算法代码集,用于生成2011-2018年全球日尺度土壤水分融合数据。
本数据为青藏高原1:25万重大工程扰动灾害数据。对于灾害解译范围,线路工程(国道、高速、铁路、电网工程)及水电工程,以工程两侧第一分水岭为界;矿山、油田和口岸工程,以距离工程1km为界。工程扰动灾害划分为两类:①由工程建设诱发的滑坡、崩塌、泥石流灾害;②可能影响工程的自然灾害,规定上述解译范围内的所有自然灾害均属于第②类工程扰动灾害。其数据包含滑坡的位置、长、宽、高差、分布高程、成因类型、诱发因素、发生时间、岩性等要素及灾害相关工程及工程建设年份等。依据Google earth影像及1:50万地质图解译全区工程扰动灾害,共解译了6176个灾害点;主要利用Google earth进行扰动灾害解译,同时结合野外考察验证解译结果,利用ArcGIS生成灾害分布图件;数据来源于Google earth高分辨率影像,原始数据精度高,在灾害文件生成过程中严格按照解译规范,并有专人审查,数据质量可靠;依据所收集数据可进行研究区灾害风险分析,为已建工程的顺利运行和未建/在建线路工程的建设提供理论指导。
本数据集为青藏高原区域2002-2020年日分辨率0.00425° x0.00425°地表反照率产品。基于MODIS反射率数据,采用耦合地形因子的多源遥感数据协同反演的BRDF\反照率模型,并引入先验知识进行质量控制,反演时空连续的日分辨率的高精度BRDF/反照率。MODIS地表反射率数据(MOD09GA、MYD09GA)集为官方网站下载,以5天为周期合成日分辨率BRDF,进而估算日分辨率的反照率,其中,黑空反照率的太阳入射为当地正午时太阳入射。经过验证评估,满足反照率应用精度要求,相较于同类产品在山区站点的验证精度更高,且时空连续性更好。可有效支撑青藏高原地区辐射平衡、环境变化研究。
数据集为中国逐月潜在蒸散发,空间分辨率为0.0083333°(约1km),时间为1990.1-2021.12(将每年更新),单位为0.1mm。该数据集是基于中国1km逐月均温、最低温、最高温数据集(本站已发布,Peng at al. 2019),采用Hargreaves潜在蒸散发计算式得到(Peng at al. 2017)。公式如下: PET = 0.0023 × S0 ×(MaxT − MinT)0.5 ×(MeanT + 17.8), 其中,PET为潜在蒸散发,mm/月;MaxT、MinT、MeanT分别为月最高温、最低温、均温;S0为到达地球大气层顶的理论太阳辐射,根据太阳常数、日地距离、儒略日、赤纬等计算得到。 为便于存储,数据均为int16型存于nc(NETCDF)文件中。nc数据可用ArcMAP软件打开制图,并可用Matlab、R软件提取处理。数据坐标系统建议使用WGS84。
本数据包含国内青藏高原范围内的1:400万精度的断裂数据,属性表字段包括断裂名称、断裂长度、走向、倾向、断层性质、古地震等。该数据来源于地震局,后来通过大量查阅断裂相关的文献,又在原始数据的基础上添加了断裂的活动年代这一属性。原始数据资料精度可靠,并有专人负责质量审查;经多人复查审核,其数据完整性、位置精度、属性精度均符合有关技术规定和标准的要求,质量优良可靠。该断裂数据可为青藏高原区域的一些断裂相关的研究工作提供基础数据支撑。
中亚是一个高度农业化的地区,其农业资源有限且非常脆弱。为了评估未来气候变化对中亚农业的潜在影响,我们基于3个全球气候模式的9千米动力降尺度结果生产了一个中亚农业气候指数(agroclimatic indicators)高分辨率预估数据集。这些农业气候指数是生长季长度(growing season length, GSL, days),有效积温(biologically effective degree days, BEDD, ℃),霜冻天数(frost days, FD, days),夏日天数(summer days, SU, days),热浪天数(warm spell duration index, WSDI, days)和热夜天数(tropical nights, TR, days)。时段是1986-2005和2031-2050,空间分辨率为0.1°。由于这些指数(除了WSDI)都是基于温度的绝对阈值定义的,对区域模拟结果的系统偏差非常敏感,我们首先用分位数映射法(quantile mapping, QM)订正了模拟的气温,然后基于订正后的气温计算指数。评估结果显示:QM方法大幅减小了指数的偏差。预估结果显示:GSL,SU,WSDI和TR在整个中亚将显著增大,而FD将显著减小;BEDD的变化具有明显的空间差异性,在中亚北部和山区是增大的,在平原的中部和南部是减小的。这个高分辨率的数据集可被用于评估未来气候变化对中亚农业的风险影响。
沱沱河源区植被类型图是基于 319 个地面采样点数据结合随机森林(RF)分类方法进行创建的。随机森林分类器的16个输入变量包括了Landsat-8的可见光、短波红外和热红外波段值及其反演的植被指数和地表温度数据等。根据研究区的植被特征及多年冻土模拟的需要,该图对高寒沼泽草甸(alpine swamp meadow)、高寒草甸(alpine meadow)、高寒草原(alpine steppe)和高寒沙漠(alpine desert )等4种植被类型进行了分类。图件的空间分辨率为30 m,可以提供更细节的植被类型的位置信息。
本数据为东南亚地区2015年的地表类型数据,空间分辨率为30米,数据类型为NetCDF,变量名为“land cover type”。该数据基于FROM-GLC数据加工而成,通过对原始影像的拼接、裁剪得到覆盖东南亚的地表类型数据,剔除东南亚地区不存在的雪冰等下垫面类型并重新整合图例。修改下垫面类型编码生成包含东南亚的地表类型数据。该数据提供耕地、森林、草地、灌木、湿地、水体、不透水面、及裸地共8种下垫面的信息。数据总体精度为71% (Gong et al., 2019),可为水文模型、区域气候模式等提供东南亚地区的下垫面信息。
“一带一路”沿线国家能源供给恢复力反映了沿线国家能源供给恢复力水平,数据值越高,表明沿线国家能源供给恢复力越强。“一带一路”沿线国家能源供给恢复力数据产品制备参考了国际能源署各国能源统计数据(https://www.iea.org/data-and-statistics),利用2000-2019年“一带一路”沿线国家煤炭、石油、天然气供给的逐年数据,在考虑各能源逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了能源供给恢复力产品。
人口年龄结构恢复力反映了沿线国家人口年龄结构恢复力水平,数据值越高,表明沿线国家人口年龄结构恢复力越强。人口年龄结构恢复力数据产品制备参考了世界银行统计数据库,利用2000-2019年“一带一路”沿线国家少儿人口(0-14岁)比例、劳动年龄人口(15-64岁)比例、老年人口(65岁及以上)比例(反向指标)3个指标的逐年变化数据,在考虑各指标逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了人口年龄结构恢复力产品。
火狐浏览器
谷歌浏览器
联系方式
友情链接
帮助信息
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件