English | 中文
“一带一路”沿线国家人口数量增长恢复力反映了沿线国家人口数量增长恢复力水平,数据值越高,表明“一带一路”沿线国家人口数量增长脆弱性越小,恢复力越强。“一带一路”沿线国家人口数量增长恢复力数据产品制备参考了世界银行统计数据库,利用2000-2019年“一带一路”沿线国家人口数量这一指标的逐年变化数据,在考虑各指标逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了人口数量增长恢复力产品。
热融滑塌是由于富冰多年冻土退化而导致的一种类似滑坡的热喀斯特地貌。一旦形成,它们会以较高的速度(几米至几十米每年)溯上坡方向扩张,垮塌的土壤和岩石会流向周边,对基础设施构成威胁,并可能释放冻土中的碳。已有研究表明,热融滑塌广泛地分布于多年冻土区,并且最近十多年它们的数量和影响范围显著增加。青藏工程走廊跨越多年冻土区,是连接内地与西藏的动脉,但已有研究对热融滑塌的分布和影响的认识还十分缺乏。为了对整个青藏工程走廊的热融滑塌进行详细和全面的调查,本研究使用深度学习方法以及目视解译和实地验证,识别并勾勒了2019 年该区域的热融滑塌。使用的高分辨率遥感影像是PlanetScope微小卫星影像,分辨率为 3 米,有4个波段,完全覆盖了整个工程走廊的多年冻土区( 约54,000 平方公里)。该方法结合深度学习的高效性及自动化和人工解译的可靠性,对整个区域进行接近十次的迭代制图,最大程度地避免漏检和误检。目视解译根据其地貌特征和时间变化(2016至2020)检查深度学习算法自动勾绘的热融滑塌。结果中包含 875 个热融滑塌的边界,以及它们的一些属性,包括编号、经纬度、置信概率和时间等信息。该结果为研究青藏工程走廊多年冻土退化以及相应的影响提供了一个重要的基准数据集。
采用三种广泛使用的基于模型的蒸散发数据集,包括ERA5,MERRA2和GLDAS2-Noah再分析数据,使用变异系数选取具有高一致性的融合区域,基于可靠性集合平均法融合获得了空间分辨率为0.25°的长序列(1980-2017年)全球逐日蒸散发产品(REA ET)。以GLEAM3.2a和通量塔观测数据作为参考数据和验证数据,结果表明,融合产品很好地捕捉了不同地区的蒸散发趋势,在所有植被覆盖情景下表现良好。数据集以NetCDF格式存储,包含变量E,代表陆地实际蒸散发,以毫米(mm)为单位。数据集包含三个维度:经度、纬度和时间,经度范围为-179.875E~179.875E,纬度范围为-59.875N~89.875N。完整时间覆盖范围为1980年1月1日~2017年12月31日。
冰川区域内的近地表气温变化和温度预测的可靠性是水文和冰川学研究的重要问题,由于缺乏高海拔观测,这些问题仍然难以捉摸。本研究基于从 6 个不同流域的 12 个自动气象站、43 个温度记录仪和 6 个国家气象站收集的 2019 年气温数据,展示了不同冰川/非冰川地区的气温变化,并评估了不同温度预测的可靠性,以减少消融估计中的误差。结果表明,不同气候背景下温度递减率 (LRs) 的空间异质性很大,最陡峭的 LRs 位于寒冷干燥的青藏高原西北部,最低的 LRs 位于受暖湿季风影响的青藏高原东南部。青藏高原西部和中部高海拔冰川区的近地表气温受下降风的影响较小,因此可以从冰川外的记录中线性预测。相比之下,青藏高原东南部温带冰川上盛行的局地降风风对环境气温的降温作用明显,因此,冰川上气温明显低于同等海拔的非冰川地区。因此,来自低海拔非冰川站的线性温度预测可能导致正度日数高估 40%,特别是对于流线距离长且冷却效果显着的大型冰川。这些发现提供了值得注意的证据,表明在估算青藏高原冰川融化时,应仔细考虑不同气候条件下高海拔冰川的不同 LR 和相关冷却效应。
数据为西藏“一江两河”地区年楚河流域的耕地土壤理化指标数据。包括土壤容重、土壤质量含水量、土壤体积含水量、土壤总孔隙度、土壤质地(黏粒、粉粒和砂砾)、土壤pH值、土壤有机质、土壤全氮、土壤全磷、土壤全钾、土壤碱解氮、土壤有效磷和土壤速效钾等;土壤样品为3-5个样点组成的混合样,实验分析参加国家相关标准,土壤容重、土壤质量含水量、体积含水量和土壤总孔隙度均采用环刀烘干法测定,土壤质地用激光粒度仪测定,pH采用玻璃电极法;有机质采用重铬酸钾容量法;全氮采用凯氏定氮法;全磷采用酸融法-钼娣抗比色法;全钾采用酸熔法-火焰光度计法;碱解氮采用氢氧化钠-碱解扩散法;有效磷采用Olsen法;速效钾采用NH4Ac浸提,火焰光度法。土壤重复样品偏差在3%以内。该数据可用于区域土壤环境质量分析,为耕地可持续利用提供科学指导。
Previous studies suggest an accelerated water cycle over the Tibetan Plateau (TP) in recent decades, mainly based on observed precipitation. However, the exact changes to evapotranspiration (ETa) over this period remain largely unknown. Although multiple ETa products for the TP region report that ETa experienced a significant increasing trend of around 8.4 ± 2.2 mm/10 a during 1982–2018, there exist large uncertainties in the annual ETa estimates over different climate zones. Here, we quantified and explained the ETa trend using a comprehensive process-based ETa model refined on ground-based observations from nine stations over the TP. Attribution analysis revealed that a large part of the increasing ETa trend was caused by higher temperature (53.8%) and more soil moisture (23.1%) caused by the melting cryosphere and increased precipitation. The increasing rate of ETa on the TP was approximately twice that of the global ETa, providing strong and independent evidence for an accelerated hydrological cycle. The dominant role of increased temperature in ETa implies a continued acceleration of the water cycle in the future.
本数据为末次冰盛期以来亚洲高山区冰川分布的模拟数据,其中包括典型区域(亚洲高山区、天山、喜马拉雅山、帕米尔高原)年分辨率的冰川面积变化序列以及典型时期(LGM(20000~19000ka),HS1(17000~16000ka),BA(~14900~14350ka),YD(12900~12000ka),EH(9500~8500ka),MH(6500~5500ka),LH(3500~2500ka)和Modern(1951~1990))1km分辨率的亚洲高山区冰川分布。该数据以基于CCSM3气候模式的TRACE全强迫模拟试验数据为外强迫场,驱动1km分辨率的PISM冰盖模式,从而获取末次盛冰期以来亚洲高山区冰川的可能分布。该数据可以用于研究末次冰盛期以来亚洲高山区冰川分布的变化及其对湖泊水位、径流、地貌等环境和气候要素的影响。
本数据集是一个包含接近35年(1984-2018)的全球高分辨率光合有效辐射数据集,其分辨率为3小时/逐日/逐月,10公里,数据单位为W/㎡,瞬时值。该数据集可用于生态过程模拟和全球碳循环的理解。该数据集是基于改进的物理参数化方案并以ISCCP-HXG云产品、ERA5再分析数据、MERRA-2气溶胶数据以及MODIS反照率产品为输入而生成的。验证并和其他全球卫星辐射产品比较表明,该数据集的精度通常比CERES全球卫星辐射产品的精度要高。该全球辐射数据集将有助于未来生态过程模拟的研究和全球二氧化碳通量的估算。
2018年第二次青藏高原科学考察队在青藏高原藏东南地区组建了“雅鲁藏布大峡谷水汽通道”科考分队,本次考察在雅鲁藏布江下游的雅鲁藏布大峡谷地区建立了水汽输送立体综合观测系统。“雅鲁藏布大峡谷水汽通道”科学考察队在雅鲁藏布江河谷沿线构建了水汽通道及云降水、地气相互作用过程的立体综合观测网,其中墨脱气象站是多种大型观测设备的集成观测基地,此外,沿峡谷自南向北的不同海拔梯度架设了微波辐射计,涡动相关地表能量平衡和辐射平衡等观测系统,整个综合观测网包括2部云雷达、2部微雨雷达、7套测量地气相互作用的涡动相关通量观测系统、3套多通道微波辐射温湿廓线仪、6套GPS水汽观测仪、2套自动气象站和19套雨量桶。
本数据为基于WRF模式4.1.2版本和WRFDA同化系统4.1.2版本建立的中亚区域再分析资料,变量包含气温、气压、风速、降水、辐射。再分析的建立使用了循环同化的方式,每6小时使用3DVAR同化一次,同化的资料包括常规大气观测和卫星辐射资料。其中常规资料主要来源为GTS,来源包括人工站、自动站、探空和飞机报,观测要素包括气温、气压、风速和湿度。卫星观测包括反演数据和辐射数据,反演数据主要为极轨气象卫星(NOAA-18、NOAA-19、METOP-A和METOP-B)反演的云导风,并重采样到54km水平分辨率;辐射数据包含了MSU、AMSU和MHS等微波辐射和HIRS红外辐射数据。模拟采用双层嵌套的方式,水平分辨率分别为27公里和9公里,垂直方向共38层,模式层顶为10hPa。模式的侧边界条件由ERA-Interim再分析逐6小时的分析场提供,模式使用的物理方案为Thompson微物理方案,CAM辐射方案,MYJ边界层方案、Grell对流方案和Noah陆面模式。本资料覆盖区域包括中亚地区的哈萨克斯坦、塔吉克斯坦、吉尔吉斯斯坦、土库曼斯坦和乌兹别克斯坦五个国家以及里海、咸海、巴尔喀什湖、伊萨克湖等中亚地区的湖泊,可用于该区域的气候、生态、水文等方面的研究。以中亚地区台站观测的降水为参照,本数据的模拟效果和融合降水产品MSWEP相似,优于ERA5和ERA-Interim。
我们提供了2019年夏季的青藏高原(TP)东北部的达日(4096米海拔,33.55°N,99.95°E)和德令哈(3137米海拔,37.47°N,96.81°E)的雨滴谱数据。雨滴谱数据由OTT HydroMet厂家制造的OTT PARSIVEL2雨滴谱仪的观测数据计算而来。雨滴谱数据质量控制(QC)流程在论文《雨滴大小分布的微观物理特征及对青藏高原东北部雷达降水估算的影响》中有所描述。提供的数据包括Nt(雨滴总数量浓度,m-3)、W(液态水含量,g m-3)、R(雨强,mm h-1)、Z(雷达反射率,mm6 m-3)、D0(体积中值直径,mm)和σm(质谱标准偏差)。提供了用矩法(MM)估计的伽马参数(N0、μ和λ)。还提供了标准化的伽马分布参数Nw和Dm。降水的微观物理特征的测量对于研究青藏高原上空降水的物理和动态过程非常重要。
包括典型冰川(浪卡子县枪勇冰川:东经90.23°,北纬28.88°,海拔4898米,地表覆被为基岩;申扎县甲岗山冰川:东经88.69°,北纬30.82°,海拔5362米,地表覆被为碎石和杂草)水下20cm左右,绝对压力和水体温度。该自动水位计的数据采用USB离线获取的方式收集,初始记录时间为2021年6月19日20时00分,记录间隔为10分钟,2021年9月18日11:00现场下载数据。数据完整。
火狐浏览器
谷歌浏览器
联系方式
友情链接
帮助信息
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件