• 气溶胶类型后处理遥感产品(2006-2020)

    气溶胶光学厚度(Aerosol Optical Depth,AOD)反映到达地表的太阳辐射受气溶胶的衰减程度,气溶胶类型根据气溶胶光学厚度AOD计算得到。本数据集来源于最新MODIS气溶胶二级产品MOD04_L2和MYD04_L2,其中 MOD 和 MYD 分别代表 Terra 和 Aqua 卫星。目前,MODIS反演气溶胶算法分别为暗目标算法(Dark Target,DT)和深蓝算法(Deep Blue,DB)。根据元数据字段表Quality Assuracne Confidence(QAC)反演精度,融合DT和DB算法产品,分别处理陆地、海洋和海岸等,索引质量最优(QAF=3)或次优(QAF=2)或满足基本需求(QAF=1),得到全覆盖、长时间序列的高分辨率AOD产品(0.1度,日尺度)。按照AOD经验阈值(AOD:0~0.2,清洁型;0.2~0.6,城市或工业型;大于0.6,沙尘型。)分类将气溶胶类型标记为三种:清洁型(1)、城市或工业型(2)和沙尘型(3)。本数据集提供MOD,MYD以及根据过境时间得到的融合产品。

    1316 2022-07-23

  • 气溶胶光学厚度后处理遥感产品(2006-2020)

    气溶胶光学厚度(Aerosol Optical Depth,AOD)反映到达地表的太阳辐射受气溶胶的衰减程度。本数据集来源于最新MODIS气溶胶二级产品MOD04_L2和MYD04_L2,其中 MOD 和 MYD 分别代表 Terra 和 Aqua 卫星。目前,MODIS反演气溶胶算法分别为暗目标算法(Dark Target,DT)和深蓝算法(Deep Blue,DB)。根据元数据字段表Quality Assuracne Confidence(QAC)反演精度,融合DT和DB算法产品,分别处理陆地、海洋和海岸等,索引质量最优(QAF=3)或次优(QAF=2)或满足基本需求(QAF=1),得到全覆盖、长时间序列的高分辨率AOD产品(0.1度,日尺度)。本数据集提供MOD,MYD以及根据过境时间得到的融合产品。

    2095 2022-07-23

  • 青藏高原纳木错土壤微生物多样性数据集(2015)

    本数据包括青藏高原纳木错地区土壤细菌分布数据,可用来探索围栏和放牧对纳木错地区土壤微生物的季节性影响,样品采集时间为2015年5月至9月,土壤样品用冰袋保存,运回北京青藏高原研究所生态实验室;本数据为扩增子测序结果,使用MoBio Powersoil™DNA分离试剂盒提取土壤DNA,引物为515F (5'-GTGCCAGCMGCCGCGGTAA-3')和806R (5'GGACTACNVGGGTWTCTAAT-3'),扩增后的片段通过Illumina Miseq PE250方式测序。原始数据通过Qiime软件进行分析,之后计算序列之间相似度,并在相似度在97%以上的序列聚类为一个OTU。采用Greengenes参考文库进行序列比对,去除了只在数据库中出现一次的序列。土壤含水率和土壤温度由土壤温湿度计测得,土壤pH值用pH计测定(Sartorius PB-10, Germany),用2 M KCl(土壤/溶液,1:5)提取土壤硝态氮(NO3−)和铵态氮(NH4+)浓度,并用Smartchem200离散自动分析仪进行分析。本数据集对研究干旱半干旱草原土壤微生物多样性具有重大意义。

    1885 2022-08-24

  • 中国植物功能型图(1 km)

    植物功能型(PFT)是根据植物种的生态系统功能及其资源利用方式而对宠大的植物种进行的组合,每一种植物功能型共享相似的植物属性,是将植物种的多样性简化为植物功能和结构的多样性。植物功能型的概念受到生态学家特别是生态系统建模者的推崇。其基本假设是全球重要的生态系统动态可以通过有限的植物功能型表达和模拟。目前,植物功能型已被广泛用于生物地理模型、生物地球化学模型、陆面过程模型和全球动态植被模型,如美国国家大气研究中心(NCAR)的陆面过程模型已经将原来用土地覆盖信息变为应用植物功能型图(Bonan et al., 2002)。植物功能型已经被用于动态全球植被模型(DGVM)中,用以预测全球变化情景下生态系统结构与功能的变化。 参考全球植物功能型分类体系,根据模型需求,将土地覆盖类型与植物功能型合并考虑,确定该数据的分类体系下表。 1、植物功能型分类体系 1 Needleleaf evergreen tree, temperate 2 Needleleaf evergreen tree, boreal 3 Needleleaf deciduous tree 4 Broadleaf evergreen tree, tropical 5 Broadleaf evergreen tree, temperate 6 Broadleaf deciduous tree, tropical 7 Broadleaf deciduous tree, temperate 8 Broadleaf deciduous tree, boreal 9 Broadleaf evergreen shrub, temperate 10 Broadleaf deciduous shrub, temperate 11 Broadleaf deciduous shrub, boreal 12 C3 grass, arctic 13 C3 grass 14 C4 grass 15 Crop 16 Permanent wetlands 17 Urban and built-up lands 18 Snow and ice 19 Barren or sparsely vegetated lands 20 Bodies of water 2、制图方法 中国1公里植物功能型图是根据Bonan等(Bonan et al., 2002)提出的土地覆盖与植物功能型转换的气候规则,对MICLCover土地覆盖图(冉有华 等,2009;Ran et al., 2012)进行转换。MICLCover土地覆盖图是融合了2000年中国1:10万土地利用数据、中国植被图集(1:100万)的植物型、中国1:10万冰川分布图、中国1:100万沼泽湿地图和MODIS 2001年土地覆盖产品(MOD12Q1)的最新发布的土地覆盖数据,采用IGBP土地覆盖分类系统。评价显示,其可能是目前存在的全国1km尺度上精度最高的土地覆盖图。气候数据利用何杰等(2010)发展的1981-2008年的空间分辨率为0.1度、时间分辨率为3小时的中国大气驱动数据,是我国现存的在全国尺度上具有最高时空分辨率的气候数据,该数据融合了Princeton 陆面模式驱动数据(Sheffield et al., 2006)、GEWEX-SRB 辐射数据(Pinker et al., 2003)、TRMM 3B42 和APHRODITE 降水数据以及中国气象局740个气象台站的观测数据。根据RanYouhua等(2010)的评价结果,GLC2000在目前的全球土地覆盖数据集中,具有相对较高的精度,且其分类系统中没有混交林这一类,因此MICLCover土地覆盖图中的混交林利用GLC2000 (Bartholome and Belward, 2005; 徐文婷 等,2005)中的信息进行了替换。该数据可用于陆面过程模型等相关研究中。

    34156 2019-05-25

  • 三极地区0.1º气溶胶光学厚度数据集(2000-2020)

    2000-2020年三极地区0.1º气溶胶光学厚度数据集(也称为“Poles AOD Collection 1.0”气溶胶光学厚度(AOD)数据集),结合Merra-2模式数据与MODIS卫星传感器AOD制作,数据覆盖时间从2000年到2020年,时间分辨率为逐日,覆盖范围为“三极”(南极、北极和青藏高原)地区,空间分辨率为0.1度。通过实测站点验证表明,数据相对偏差在35%以内,可有效提高极区气溶胶光学厚度的覆盖率和精度。

    2040 2022-10-14

  • 基于青藏高原土壤温湿度观测网的长时序地表土壤湿度数据集(2009-2019)

    青藏高原土壤温湿度观测网(Tibet-Obs)始建于2008年,包括玛曲、那曲、阿里和狮泉河四个站网,目前已连续运行超过十年,并被NASA的土壤水分主被动卫星SMAP选定为其产品的地面验证点,促进了青藏高原遥感产品和模型模拟的评估和改进。本研究详细梳理了各观测站网的现状及其应用情况,并基于已有观测数据发展了一套长时序(2009-2019)地表土壤湿度(5 cm)观测数据集,主要包含四个站网各站点的15分钟原始观测数据以及玛曲和狮泉河站网的升尺度区域土壤湿度数据。

    8100 2021-07-15

  • 青藏高原冰芯黑碳数据集(1950-2006)

    青藏高原作为亚洲“水塔”为亚洲主要河流提供水资源。由生物质和化石燃料燃烧排放的黑碳(Black carbon,BC)气溶胶对辐射具有极强的吸收作用,进而对地球系统的能量收支和分布具有重要的影响,是气候环境变化不可忽视的影响因子。青藏高原周边地区排放的黑碳气溶胶经大气环流可被传输至高原内部,并沉降到雪冰表面,对降水和冰川物质平衡产生重要影响。在青藏高原通过钻取冰芯样品、采集表雪样品,测量其中的黑碳含量,恢复历史记录和空间分布,为对评估黑碳对青藏高原的气候环境影响和大气污染物的跨境传输提供数据基础。

    3685 2018-12-31

  • 青藏高原县域牲畜数量序列数据(1970-2006)

    本数据集包含了青藏高原主要城市与县1970-2006年牲畜数量变化序列数据,用于研究青藏高原社会经济变化。 数据表共有十个字段 字段1:年 解释:数据的年份 字段2:省 解释:所属的省份 字段3:市/州 解释:所属的市或者州 字段4:县 解释:县的名称 字段5:大牲畜(万头) 解释:牛、马、骡、驴、骆驼等大牲畜的数量 字段6:牛群(万头) 解释:牛的数量 字段7:马属动物(万头)解释:马、骡、驴等马属动物的数量 字段8:马(万头) 解释:马的数量 字段9:羊(万头) 解释:羊的数量 字段10:数据来源 解释:数据摘取的来源 数据来自统计年鉴与县志,部分清单如下: [1] 甘肃年鉴编委会. 甘肃年鉴[J]. 北京:中国统计出版社,1984,1988-2009 [2] 云南省统计局. 云南统计年鉴[J]. 北京:中国统计出版社,1988-2009 [3] 四川省统计局,四川调查总队. 四川统计年鉴[J]. 北京:中国统计出版社,1987-1991,1996-2009 [4] 新疆维吾尔自治区统计局. 新疆统计年鉴[J]. 北京:中国统计出版社,1989-1996,1998-2009 [5] 西藏自治区统计局. 西藏统计年鉴[J]. 北京:中国统计出版社,1986-2009 [6] 青海省统计局. 青海统计年鉴[J]. 北京:中国统计出版社,1986-1994,1996-2008. [7] 互助土族自治县志编纂委员会. 互助土族自治县志[J]. 青海:青海人民出版社,1993 [8] 海晏县志编纂委员会. 海晏县志[J]. 甘肃:甘肃文化出版社,1994 [9] 门源县志编纂委员会. 门源县志[J]. 甘肃:甘肃人民出版社,1993 [10] 贵南县志编纂委员会. 贵南县志[J]. 陕西:三秦出版社,1996 [11] 贵德县志编纂委员会. 贵德县志[J]. 陕西:陕西人民出版社,1995 [12] 尖扎县志编纂委员会. 尖扎县志[J]. 甘肃:甘肃人民出版社,2003 [13] 达日县志编纂委员会. 达日县志[J]. 陕西:陕西人民出版社,1993 [14] 格尔木市志编纂委员会. 格尔木市志[J]. 北京:方志出版社,2005 [15] 德令哈市志编纂委员会. 德令哈市志[J]. 北京:方志出版社,2004 [16] 天峻县志编纂委员会. 天峻县志[J]. 甘肃:甘肃文化出版社,1995 [17] 乃东县志编纂委员会. 乃东县志[J]. 北京:中国藏学出版社,2006 [18] 古浪县志编纂委员会. 古浪县志[J]. 甘肃:甘肃人民出版社,1996 [19] 阿克塞哈萨克族自治县志编纂委员会. 阿克塞哈萨克族自治县志[J]. 甘肃:甘肃人民出版社,1993 [20] 岷县志编纂委员会. 岷县志[J]. 甘肃:甘肃人民出版社,1995 [21] 宕昌县志编纂委员会. 宕昌县志[J]. 甘肃:甘肃文化出版社,1995 [22] 宕昌县志编纂委员会. 宕昌县志(续编)(1985-2005)[J]. 甘肃:甘肃文化出版社,2006 [23] 文县志编纂委员会. 文县志[J]. 甘肃:甘肃文化出版社,1997 [24] 康乐县志编纂委员会. 康乐县志[J]. 上海:三联书店. 1995 [25] 积石山(保安族 东乡族 撒拉族)自治县志编纂委员会. 积石山(保安族 东乡族 撒拉族)自治县志[J],甘肃:甘肃文化出版社,1998 [26] 碌曲县志编纂委员会. 碌曲县志[J]. 甘肃:甘肃人民出版社,2006 [27] 舟曲县志编纂委员会. 舟曲县志[J]. 上海:三联书店. 1996 [28] 夏河县志编纂委员会. 夏河县志[J]. 甘肃:甘肃文化出版社,1999 [29] 卓尼县志编纂委员会. 卓尼县志[J]. 甘肃:甘肃民族出版社,1994 [30] 迭部县志编纂委员会. 迭部县志[J]. 甘肃:兰州大学出版社,1998 [31] 彭县志编纂委员会. 彭县志[J]. 四川:四川人民,1989 [32] 灌县志编纂委员会. 灌县志[J]. 四川:四川人民出版社,1991 [33] 温江县志编纂委员会. 温江县志[J]. 四川:四川人民出版社,1990 [34] 什邡县志编纂委员会. 什邡县志[J]. 四川:四川大学出版社,1988 [35] 天全县志编纂委员会. 天全县志[J]. 四川:四川科学技术出版社,1997 [36] 石棉县志编纂委员会. 石棉县志[J]. 四川:四川辞书出版社,1999 [37] 芦山县志编纂委员会. 芦山县志[J]. 四川:方志出版社,2000 [38] 红原县志编纂委员会. 红原县志[J]. 四川:四川人民出版社,1996 [39] 汶川县志编纂委员会. 汶川县志[J]. 四川:巴蜀书社,2007 [40] 得荣县志编纂委员会. 得荣县志[J]. 四川:四川大学,2000 [41] 白玉县志编纂委员会. 白玉县志[J]. 四川:四川大学出版社,1996 [42] 巴塘县志编纂委员会. 巴塘县志[J]. 四川:四川民族出版社,1993 [43] 九龙县志编纂委员会. 九龙县志续篇(1986-2000)[J]. 四川:四川科学技术出版社,2007 [44] 贡山独龙族怒族自治县志编纂委员会. 贡山独龙族怒族自治县志[J]. 北京:民族出版社,2006 [45] 泸水县志编纂委员会. 泸水县志[J]. 云南:云南人民出版社,1995 [46] 德钦县志编纂委员会. 德钦县志[J]. 云南:云南民族,1997 [47] 于田县志编纂委员会. 于田县志[J]. 新疆:新疆人民出版社,2006 [48] 策勒县志编纂委员会. 策勒县志[J]. 新疆:新疆人民出版社,2005 [49] 和田县志编纂委员会. 和田县志[J]. 新疆:新疆人民出版社,2006 [50] 新疆且末县地方志编纂委员会. 且末县志[J]. 新疆:新疆人民出版社,1996 [51] 新疆莎车县志编纂委员会. 莎车县志[J]. 新疆:新疆人民出版社,1996 [52] 叶城县志编纂委员会. 叶城县志[J]. 新疆:新疆人民出版社,1999 [53] 新疆阿克陶县地方志编纂委员会. 阿克陶县志[J]. 新疆:新疆人民出版社,1996 [54] 新疆乌恰县地方志编纂委员会. 乌恰县志[J]. 新疆:新疆人民出版社,1995

    7198 2018-07-21

  • 环北极圈和青藏高原植被修正指数后处理产品(2013,2018)

    NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、雪、枯叶、粗糙度等,且与植被覆盖有关。是反映农作物长势和营养信息的重要参数之一。根据该参数,可以知道不同季节的农作物对氮的需求量, 对合理施用氮肥具有重要的指导作用。植被修正指数Correct NDVI (C-NDVI) 是剔除气候要素(气温、降水等)对NDVI的影响后的NDVI的值。以降水为例,降水对植被生长影响的滞后效应的研究表明,不同地区由于植被组成和土壤类型的差异,降水影响的滞后时间不同。本研究工作主要是对MODIS NDVI数据进行后处理,首先将当月NDVI值与本月的降水量、本月与上月的降水量的平均值、本月与上两个月的降水量的平均值等分别进行相关分析,确定最优的滞后时间。将NDVI与降水和气温做回归分析,得到相关的系数,然后通过MODIS NDVI与气候因子回归的NDVI的差值计算出校正的NDVI值。我们利用气候数据对NDVI进行修正后给出可靠的2013年和2018年的环北极圈(范围为北纬66°以北)和青藏高原(范围为北纬26°到39.85°,东经73.45°到104.65°)的植被修正指数。数据空间分辨率为0.5度,时间分辨率为月度值。

    1211 2022-07-16

  • 中国1km分辨率逐月降水量数据集(1901-2021)

    该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2021.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国地区降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位分别为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

    103368 2020-06-08