A long term hourly eddy covariance dataset of consistently processed CO2 and H2O Fluxes from the Tibetan Alpine Steppe at Nam Co (2005 - 2019)

The data set contains nearly 15 years of eddy covariance data from an alpine steppe ecosystem on the central Tibetan Plateau.The data was processed following standardized quality control methods to allow for comparability between the different years of our record and with other data sets. To ensure meaningful estimates of ecosystem atmosphere exchange, careful application of the following correction procedures and analyses was necessary: (1) Due to the remote location, continuous maintenance of the eddy covariance (EC) system was not always possible, so that cleaning and calibration of the sensors was performed irregularly. Furthermore, the high proportion of bare soil and high wind speeds led to accumulation of dirt in the measurement path of the infrared gas analyzer (IRGA). The installation of the sensor in such a challenging environment resulted in a considerable drift in CO2 and H2O gas density measurements. If not accounted for, this concentration bias may distort the estimation of the carbon uptake. We applied a modified drift correction procedure following Fratini et al. (2014) which, instead of a linear interpolation between calibration dates, uses the CO2 concentration measurements from the Mt. Waliguan atmospheric observatory as reference time series. (2) We applied rigorous quality filtering of the calculated fluxes to retain only fluxes which represent actual physical processes. (3) During the long measurement period, there were several buildings constructed in the near vicinity of the EC system. We investigated the influence of these obstacles on the turbulent flow regime to identify fluxes with uncertain land cover contribution and exclude them from subsequent computations. (4) We calculated the de-facto standard correction for instrument surface heating during cold conditions (hereafter called sensor self heating correction) following Burba et al. (2008) and a revision of the original method following Frank and Massman (2020). (5)Subsequently, we applied the traditional and widely used gap filling procedure following Reichstein et al. (2005) to provide a more complete overview of the annual net ecosystem CO2 exchange.(6) We estimated the flux uncertainty by calculating the random flux error (RE) following Finkelstein and Sims (2001) and by using the standard deviation of the fluxes used for gap filling(NEE_fsd) as a measure for spatial and temporal variation.

Lake sediment-surface pollen dataset for alpine meadow in eastern Tibetan Plateau

Relationship between modern pollen and climate, and its representative to vegetation are the important references in explaining and reconstructing past climate and vegetation qualitatively or quantitatively. To extrct past climate and vegetation signals from fossil pollen spectrum of a lacustrine sediment, a corresponding modern pollen dataset collected from lake-sediment surface is necessary. At present, there are a few modern pollen datasets extracted from lake sediment-surface established on the Tibetan Plateau, however, the geographic gaps (e.g. the central and east Tibetan Plateau) of available sampled lakes influence the correct understanding. To ensure the even distribution of the representative lakes, we collected lake sediment-surface samples (n=117) covering the alpine meadow evenly on the east and central Tibetan Plateau, in July and August 2018. For pollen extraction, approximately 10 g (wet original sediment) per sample were sub-sampled. Pollen sample was processed by the standard acid-alkali-acid procedures followed by 7-μm-mesh sieving. More than 500 terrestrial pollen grains were counted for each sample. Pollen assemblages of the dataset from alpine meadow are dominated by Cyperaceae (mean is 68.4%, maximum is 95.9%), with other herbaceous pollen taxa as commen taxa including Poaceae (mean is 10.3%, maximum is 87.7%), Ranunculaceae (mean is 4.8%, maximum is 33.6%), Artemisia (mean is 3.7%, maximum is 24.5%), Asteraceae (mean is 2.1%, maximum is 33.6%), etc. Salix (mean is 0.4%, maximum is 5.3%) is the major shrub taxon in these pollen assemblages, while arboreal taxa occur with low percentages generally (mean of total arboreal percentages is 0.9% (maximum is 5.8%), including mainly Pinus (mean is 0.3%, maximum is 1.8%), Betula (mean is 0.1%, maximum is 0.9%) and Alnus (mean is 0.1%, maximum is 0.7%). These pollen assemblages represent the plant components well in the alpine meadow communities, although they are influenced slightly by long-distance pollen grain transported by wind or river (such as these arboreal pollen taxa). Together with pollen counts and percentages, we also provided the modern climatic data for the sampled lakes. The China Meteorological Forcing Dataset (CMFD; gridded near-surface meteorological dataset) with a temporal resolution of three hours and a spatial resolution of 0.1° was employed, and the climatic data of the nearest pixel of one sampled lake was defined to represent climatic conditions of the lake. Finally, the mean annual precipitation (Pann), mean annual temperature (Tann) and mean temperature of the coldest month (Mtco) and warmest month (Mtwa) are calculated for each sampled lake.

Mass balance (2008-2018) on Naimona’nyi Glacier and related meteorological data (2011-2018)

The data set includes annual mass balance of Naimona’nyi glacier (northern branch) from 2008 to 2018, daily meteorological data at two automatic meteorological stations (AWSs) near the glacier from 2011 to 2018 and monthly air temperature and relative humidity on the glacier from 2018 to 2019. In the end of September or early October for each year , the stake heights and snow-pit features (snow layer density and stratigraphy) are manually measured to derive the annual point mass balance. Then the glacier-wide mass balance was then calculated (Please to see the reference). Two automatic weather stations (AWSs, Campbell company) were installed near the Naimona’nyi Glacier. AWS1, at 5543 m a. s.l., recorded meteorological variables from October 2011 at half hourly resolution, including air temperature (℃), relative humidity (%), and downward shortwave radiation (W m-2) . AWS2 was installed at 5950 m a.s.l. in October 2010 at hourly resolution and recorded wind speed (m/s), air pressure (hPa), precipitation (mm). Data quality: the quality of the original data is better, less missing. Firstly, the abnormal data in the original records are removed, and then the daily values of these parameters are calculated. Two probes (Hobo MX2301) which record air temperature and relative humidity was installed on the glacier at half hour resolution since October 2018. The observed meteorological data was calculated as monthly values. The data is stored in Excel file. It can be used by researchers for studying the changes in climate, hydrology, glaciers, etc.