HUST-ERA5, an hourly global atmospheric de-aliasing product (2002-2020)

Temporal aliasing caused by the incomplete reduction of high frequency atmosphere and ocean variability contributes as a major error source in the time-variable gravity field products recovered from the Gravity Recovery and Climate Experiment (GRACE) and GRACE-Follow On (GRACE-FO), and likely future gravity missions. The current state-of-the-art of satellite gravity data processing makes use of de-aliasing products to reduce high-frequency mass anomalies, for example, the most recent official Atmosphere and Ocean De-aliasing products (AOD1B-RL06) are applied to model non-tidal mass changes in the ocean and atmosphere. The products already achieved a temporal resolution of 3 hours that greatly improved the quality of gravity inversion compared to the previous releases. In this study, we explore a refined mass integration approach of the atmosphere that considers geometrical, physical, and numerical modifications of the current AOD1B method. Then, the newly available ERA-5 global climate data of 31 km spatial and 1-hour temporal resolution are used to produce a new set of non-tidal atmosphere de-aliasing product (HUST-ERA5) that is computed in terms of spherical harmonics up to degree/order 100 covering 2002 onwards. Despite of an overall agreement with the AOD1B-RL06 (correlation of low-degree coefficients are all greater than 0.99), discrepancy is still distinguished for spatial-temporal analysis, i.e., a better consistency of HUST-ERA5 from 2007 to 2010. The factors contributing the differences, including the input data, method and temporal resolution, are therefore respectively analyzed and quantified through extensive assessments. We find the difference of HUST-ERA5 and AOD1B-RL06 has led to a mean variation of 7.34 nm/s on the the LRI (Laser Ranging Interferometry) range-rate residual on Jan 2019, which is close to the LRI precision already. This impact is invisible for GRACE(-FO) gravity inversion because of the less accurate onboard KBR(K-band ranging) instrument, however, it will be nonnegligible and should be considered when the LRI completely replaces KBR in the future gravity mission. In addition, HUST-ERA5 can also be widely used in LEO satellite orbit determination and superconducting gravimeter atmospheric correction.

Distribution data of freezing (thawing) depth in Sichuan Tibet engineering corridor (2001-2100)

Based on gipl1.0 permafrost spatial distribution model, combined with the existing basic data, including climate change, soil types, and vegetation data, the permafrost and seasonal permafrost characteristics of Sichuan Tibet railway are simulated. The data result is 500m spatial resolution grid, including the maximum depth of permafrost and the maximum freezing depth of seasonal permafrost. The results are verified by drilling data. The data date is 2001-20192041-20602081-2100 (20-year average), in which the water body and glacier area are excluded from the calculation range through the mask (null value). The climate data is monthly mean, other data remain unchanged in the process of simulation, and the spatial resolution is 500m. Data sources and "woeldc" lim:https :// www.worldclim.org/ , DEM and vegetation soil: https://data.tpdc.ac.cn/zh-hans/ ”According to the characteristics of different data sources, the authenticity and consistency of the original data are checked and standardized; The permafrost model is used to simulate the permafrost and seasonal frozen soil. The output results are ground temperature and active layer (maximum frozen depth). The simulation results are verified with the borehole ground temperature. Finally, the spatial data set is mapped by ArcGIS. Make digital processing operation standard. In the process of processing, the operators are required to strictly abide by the operation specifications, and the special person is responsible for the quality review. The data integrity, logical consistency, position accuracy, attribute accuracy, edge connection accuracy and current situation are all in line with the requirements of relevant technical regulations and standards formulated by the State Bureau of Surveying and mapping. The data can provide necessary data support for the later research on the freezing (thawing) depth of the corridor of Sichuan Tibet project.

Surface meteorological driving dataset of the Qinghai Tibetan Plateau (2019-2020)

1) The Qinghai Tibet plateau surface meteorological driving data set (2019-2020) includes four meteorological elements: land surface temperature, mean total precipitation rate, mean surface downward long wave radiation flux and mean surface downward short wave radiation flux. 2) The data set is based on era5 reanalysis data, supplemented by MODIS NDVI, MODIS DEM and fy3d mwri DEM data products. The era5 reanalysis data were downscaled by multiple linear regression method, and finally generated by resampling. 3) All data elements of the Qinghai Tibet plateau surface meteorological driving data set (2019-2020) are stored in TIFF format. The time resolution includes (daily, monthly and annual), and the spatial resolution is unified as 0.1 ° × 0.1°。 4) This data is convenient for researchers and students who will not use such assimilated data in. NC format. Based on the long-term observation data of field stations of the alpine network and overseas stations in the pan third pole region, a series of data sets of meteorological, hydrological and ecological elements in the pan third pole region are established; Complete the inversion of meteorological elements, lake water quantity and quality, aboveground vegetation biomass, glacier and frozen soil change and other data products through intensive observation in key areas and verification of sample plots and sample points; Based on the Internet of things technology, a multi station networked meteorological, hydrological and ecological data management platform is developed to realize real-time acquisition, remote control and sharing of networked data.