View Details A Big Earth Data Platform for Three Poles uses cookies to improve your experience and to help us understand how you use our websites.

English | Chinese

A Big Earth Data Platform for Three Poles
Search
  • Home
  • Data
  • Analysis
  • Models
  • News & Events
  • About
    Register Sign In
Home / Data / Browse by Thumbnails
Highlights Browse by Subjects ALL Data Search on Map Browse by Keywords Browse by Thumbnails Browse by Literature Browse by Author
Active layer thickness in the Qilian Mountains (2011-2014)

Active layer thickness in mountians shows strong spatial heterogeneity mainly due to the complex terrain. In this data set, the active layer thickness in the upper reaches of Heihe River Basin is systematically investigated by ground-penetrating radar (GPR) and other traditional methods. Compared with other direct measurement methods, the error is about 8 cm, indicating a high reliability. This data set can provide detailed field data for understanding the active layer thickness in this area and can provide evaluation datasets for the land surface model, especially for permafrost research.

The Active layer moisture monitoring dataset of Tibet Plateau Beibeihe meteorological station (2017-2018)

The active layer is one of the main characteristics of permafrost. It melts in warm season and freezes in cold season, showing seasonal changes. The change of ground temperature of active layer will directly affect the change of temperature of permafrost, thus affecting the stability of permafrost.The monitoring station of this data set is located at 92 °E, 35 ° N, with an elevation of 4,600 M. The monitoring site is flat, the vegetation type is alpine meadow, and the monitoring instrument is DT500 series data acquisition instrument. The monitoring of ground temperature is carried out at 5 depths below the surface, 10 cm, 20 cm, 40 cm, 80 cm and 160cm respectively. The time interval of this data set is 1 day, which is the average value of data once every 30 minutes.Data are stable and continuous during the period.Scientific subjects such as thermal change process and change mechanism of active layer are carried out by combining data of soil heat flux and soil moisture.

Data from automatic weather station at the end of glacier in Qinghai-Tibet Plateau (2019-2020)

Glacier surface micrometeorology is to observe the wind direction, wind speed, temperature, humidity, air pressure, four component radiation, ice temperature and precipitation at a certain height of the glacier surface. Glacier surface micrometeorology monitoring is one of the important contents of glacier monitoring. It is an important basic data for the study of energy mass balance, glacier movement, glacier melt runoff, ice core and other related model simulation, which lays a foundation for exploring the relationship between climate change and glacier change. Automatic monitoring is mainly carried out by setting up Alpine weather stations on the glacier surface, and portable weather stations can also be used for short-term flow monitoring. In recent years, more than 20 glacier surfaces in Tianshan, West Kunlun, Qilian, Qiangtang inland, Tanggula, Nianqing Tanggula, southeastern Tibet, Hengduan and Himalayas have been monitored. The data set is monthly meteorological data of glacier area and glacier end.

Black carbon dataset of ice cores over the Tibetan Plateau (1950-2006)

As the “water tower of Asia”, Tibetan Plateau (TP) are the resource of major rivers in Asia. Black carbon (BC) aerosol emitted from surrounding regions can be transported to the inner TP by atmospheric circulation and consequently deposited in snow, which can significantly influence precipitation and mass balance of glaciers. By drilling and sampling ice cores and snow samples and measuring BC concentration, historical record and spatial distribution can be abtained. It can provide basic dataset to study the effects of BC to the environment and climate over the Tibetan Plateau, as well as the pollutants transport.

The lakes larger than 1k㎡ in Tibetan Plateau (V1.0) (1970s, 1990, 2000, 2010)

The dataset includes vector map of the lakes larger than 1k㎡ on Tibetan Plateau in 1970s, 1990, 2000, 2010. The lake boundry data was extracted from remote sensing image like Landsat MSS, TM, ETM+, by means of visual interpretation. The data type is vector data, and it's attribute class includes Area (km²). The Projected Coordinate System is Albers Conical Equal Area. It is mainly used in the study of changes in lakes, hydrological and meteorological on the Tibetan Plateau.

Oxygen content in the atmosphere of the Tibetan Plateau (1980-2019)

Based on the meteorological data of 105 meteorological stations in and around the Qinghai Tibet Plateau from 1980 to 2019 (data from China Meteorological Administration and National Meteorological Science Data Center), the oxygen content was calculated. It was found that there was a significant linear correlation between oxygen content and altitude, y = -0.0263x + 283.8, R2 = 0.9819. Therefore, the oxygen content distribution map can be calculated based on DEM data grid. Due to the limitation of the natural environment in the Qinghai Tibet Plateau, there are few related fixed-point observation institutions. This data can reflect the distribution of oxygen content in the Qinghai Tibet Plateau to a certain extent, and has certain reference significance for the research of human living environment in the Qinghai Tibet Plateau.

Tibetan Plateau surface spectral data set (2019)

The spectral characteristics of different land use types are mainly determined by spectrograph in the surface spectral data set of Qinghai Tibet Plateau. The measured ground features are mainly divided into woodland, (Alpine) shrub, (Alpine) grassland, wetland, cultivated land and bare land. It includes the field observation points in Lhasa, Linzhi, Shigatse, Ali and Naqu. The spectral characteristics of forests were measured based on the different growth stages of vegetation; The spectral characteristics of grassland were measured based on different coverage; The spectral characteristics of cultivated land were measured based on the main crop types, rape flowers and highland barley; The measurements of wetlands were conducted on the rivers, low-lying valleys and lakes; The measurements of bare lands were conducted on the desert, Gobi and roads, which have no vegetation cover. The measurement conducted from July to August in 2019, and the data is daily observation data. The data set can provide a reference for the field verification of remote sensing interpretation.

Impervious surface product of Qinghai-Tibet Plateau with 10m resolution (2018)

Data content: The data set products include impervious surface products with a resolution of 10 meters in the Qinghai-Tibet Plateau, which can be used as a key parameter for related research on the Qinghai-Tibet Plateau ecosystem. Data source and processing method: Product inversion is mainly based on Sentinel series data, considering joint features, combining depth spatial features, long-time NDVI and other exponential features, and topographic features, and using random forest model to achieve impervious surface information extraction. Data quality: The overall accuracy is high. Data application results and prospects: The data set will be continuously updated and can be used to further clarify the impact of human activities on the ecosystem of the Qinghai-Tibet Plateau.

Impervious surface product of Qinghai-Tibet Plateau with 30m resolution (2015)

Data content: The data set products include impervious surface products with a resolution of 30 meters in the Qinghai-Tibet Plateau, which can be used as a key parameter for related research on the Qinghai-Tibet Plateau ecosystem. Data source and processing method: Product inversion is mainly based on Landsat series data, considering joint features, combining depth spatial features, long-time NDVI and other exponential features, and topographic features, and using random forest model to achieve impervious surface information extraction. Data quality: The overall accuracy is high, better than 80% in most areas. Data application results and prospects: The data set will be continuously updated and can be used to further clarify the impact of human activities on the ecosystem of the Qinghai-Tibet Plateau.

Photosynthetically active radiation absorption coefficient dataset in Qinghai Tibet Plateau (2000-2015)

Photosynthetic effective radiation absorption coefficient photosynthetically active radiation component is an important biophysical parameter. It is an important land characteristic parameter of ecosystem function model, crop growth model, net primary productivity model, atmosphere model, biogeochemical model and ecological model, and is an ideal parameter for estimating vegetation biomass. The data set contains the data of photosynthetically active radiation absorption coefficient in Qinghai Tibet Plateau, with spatial resolution of 500m, temporal resolution of 8D, and time coverage of 2000, 2005, 2010 and 2015. The data source is MODIS Lai / FPAR product data mod15a2h (C6) on NASA website. The data are of great significance to the analysis of vegetation ecological environment in the Qinghai Tibet Plateau.

A synthesis dataset of permafrost for the Qinghai-Xizang (Tibet) Plateau, China (2002-2018)

The Qinghai Tibet Plateau is known as "the third pole of the Earth". The long-term and large-scale observation data of permafrost is of great significance to understand the changes and effects of Permafrost on the Qinghai-Xizang Plateau (QXP). Especially in such a cold and anoxic area, the extreme shortage of data resources greatly limits the development, improvement and validation of various remote sensing inversion algorithms, as well as the earth system simulation and scientific research of the QXP. In the past few decades, our research team has established a synthesis network in the permafrost region of the QXP. For the first time, the database systematically integrates the long-time series observation data of 6 automatic meteorological stations, 12 active layer sites and 84 boreholes. In the process of data collection and processing, all observation data have been strictly controlled. The data set will be released to scientists with multi-disciplinary backgrounds (e.g., cryosphere, hydrology, ecology and meteorology), which will greatly promote the validation, development and improvement of hydrological model, land surface process model and climate model of the QXP.

The meteorological observation dataset of Guoluo meadow on the Tibetan Plateau (2005-2009)

This data set includes meteorological data observed by the carbon flux station in the Guoluo Army Ranch in Qinghai. The temporal coverage is from 2005 to 2009, and the temporal resolution is 1 day. Meteorological and carbon flux data observation methods: vorticity-related observation instruments were used for automatic recording; biomass observation method: harvest method, weighing in a 60-degree oven for 48 hours. Both carbon flux and meteorological data were automatically recorded by the instruments and manually checked. During the data observation process, the operation of the instrument and the selection of the observation objects were in strict accordance with professional requirements, and the data could be applied to plant leaf photosynthetic parameter simulation and productivity estimation. This data contains observation items as follows: Temperature °C Precipitation mm Wind speed m/s Soil temperature at 5 cm depth °C Photosynthetically active radiation µmol/m²s Total radiation W/m²

  • «
  • 15
  • 16
  • 17
  • 18
  • 19 (current)
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • »

Warning

Firefox

Chrome

Please using Chrome or Firefox to get the best view of our website

Warning

Firefox

Chrome

Please using Chrome or Firefox to get the best view of our website

Contact Support

Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cn

Links

National Tibetan Plateau Data Center
Ecological Data Center of Sanjiangyuan National Park
Cold and Arid Regions Science Data Center
Digital Heihe

Help

How to Cite Data How to Submit Data How to Apply for Data Privacy Policy Contact Us

Follow Us

ercode

A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845

Tech Support: westdc.cn