English | Chinese
The dataset is the land cover of Qing-Tibet Plateau in 2010. The data format is a TIFF file, spatial resolution is 300 meters, including crop land, grassland, forest land, urban land, and so on. The dataset offers a geographic fundation for studying the interaction between urbanization and ecological reservation of Qing-Tibet Plateau. This land cover data is a product of CCI-LC project conducted by European Space Agency. The coordinate reference system of the dataset is a geographic coordinate system based on the World Geodetic System 84 reference ellipsoid. There are 22 major classes of land covers. The data were generated using multiple satellite data sources, including MERIS FR/RR, AVHRR, SPOT-VGT, PROBA-V. Validation analysis shows the overall accuracy of the dataset is more than 70%, but it varies with locations and land cover types.
Under the funding of the first project (Development of Multi-scale Observation and Data Products of Key Cryosphere Parameters) of the National Key Research and Development Program of China-"The Observation and Inversion of Key Parameters of Cryosphere and Polar Environmental Changes", the research group of Zhang, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, developed the snow depth downscaling product in the Qinghai-Tibet Plateau. The snow depth downscaling data set for the Tibetan Plateau is derived from the fusion of snow cover probability dataset and Long-term snow depth dataset in China. The sub-pixel spatio-temporal downscaling algorithm is developed to downscale the original 0.25° snow depth dataset, and the 0.05° daily snow depth product is obtained. By comparing the accuracy evaluation of the snow depth product before and after downscaling, it is found that the root mean square error of the snow depth downscaling product is 0.61 cm less than the original product. The details of the product information of the Downscaling of Snow Depth Dataset for the Tibetan Plateau (2000-2018) are as follows. The projection is longitude and latitude, the spatial resolution is 0.05° (about 5km), and the time is from September 1, 2000 to September 1, 2018. It is a TIF format file. The naming rule is SD_yyyyddd.tif, where yyyy represents year and DDD represents Julian day (001-365). Snow depth (SD), unit: centimeter (cm). The spatial resolution is 0.05°. The time resolution is day by day.
Land surface temperature (LST) is a key variable for high temperature and drought monitoring and climate and ecological environment research. Due to the sparse distribution of ground observation stations, thermal infrared remote sensing technology has become an important means of quickly obtaining ground temperature over large areas. However, there are many missing and low-quality values in satellite-based LST data because clouds cover more than 60% of the global surface every day. This article presents a unique LST dataset with a monthly temporal resolution for China from 2003 to 2017 that makes full use of the advantages of MODIS data and meteorological station data to overcome the defects of cloud influence via a reconstruction model. We specifically describe the reconstruction model, which uses a combination of MODIS daily data, monthly data and meteorological station data to reconstruct the LST in areas with cloud coverage and for grid cells with elevated LST error, and the data performance is then further improved by establishing a regression analysis model. The validation indicates that the new LST dataset is highly consistent with in situ observations. For the six natural subregions with different climatic conditions in China, verification using ground observation data shows that the root mean square error (RMSE) ranges from 1.24 to 1.58 K, the mean absolute error (MAE) varies from 1.23 to 1.37 K and the Pearson coefficient (R2) ranges from 0.93 to 0.99. The new dataset adequately captures the spatiotemporal variations in LST at annual, seasonal and monthly scales. From 2003 to 2017, the overall annual mean LST in China showed a weak increase. Moreover, the positive trend was remarkably unevenly distributed across China. The most significant warming occurred in the central and western areas of the Inner Mongolia Plateau in the Northwest Region, and the average annual temperature change is greater than 0.1K (R>0:71, P<0:05), and a strong negative trend was observed in some parts of the Northeast Region and South China Region. Seasonally, there was significant warming in western China in winter, which was most pronounced in December. The reconstructed dataset exhibits significant improvements and can be used for the spatiotemporal evaluation of LST in high-temperature and drought-monitoring studies. More detail please refer to Zhao et al (2020). doi.org/10.5281/zenodo.3528024
This data is the land cover data at 30m resolution of Southeast Asia in 2015. The data format of the data is NetCDF, and the variable name is "land cover type". The data was obtained by mosaicing and extracting the From-GLC data. Several land cover types, such as snow and ice that do not exist in Southeast Asia were eliminated.The legend were reintegrated to match the new data. The data provide information of 8 land cover types: cropland, forest, grassland, shrub, wetland, water, city and bare land. The overall accuracy of the data is 71% (Gong et al., 2019). The data can provide the land cover information of Southeast Asia for hydrological models and regional climate models.
The temporal resolution of temperature and radiation data in Central Asia is monthly scale, and the spatial resolution is 0.5 degree and 0.05 degree, respectively. The GCS_WGS_1984 projection coordinate system was used. Among them, the downward short wave radiation, air temperature and vapor pressure data of GLDAS, surface temperature / emissivity data of MOD11C3, surface albedo data of MCD43C3 and ASTER_GEDv4.1 are used for radiation data calculation; the temperature data was calculated by MOD06_ L2 cloud products and MOD07_ L2 atmospheric profile data was calculated. This data is based on the advanced remote sensing algorithm and makes full use of the current high-precision remote sensing data and products, which is different from the traditional climate model for the estimation of climate elements. The data can be used to analyze the spatial and temporal variation characteristics of water resources in Central Asia, analyze the supply-demand relationship of agricultural water resources and evaluate the development potential of water resources.
This dataset includes the concentrations and spatial pattern of organic carbon (OC) and Elemental carbon (EC) in the carbonaceous aerosol (CA) of the Tibetan Plateau and surroundings. OC and EC were measured by Desert Research Institute Model 2001 Thermal/Optical Carbon Analyzer. The limit of detection (LOD) for OC and EC were 0.43 and 0.12 ug/cm2, respectively. In addition, MAC was also calculated for assessing the effect of EC. This dataset will provide the informations of CA contamination and background values over the Tibetan Plateau and surroundings.
This dataset includes the monthly precipitation data with 0.0083333 arc degree (~1km) for China from Jan 1901 to Dec 2020. The data form belongs to NETCDF, namely .nc file. The unit of the data is 0.1 mm. The dataset was spatially downscaled from CRU TS v4.02 with WorldClim datasets based on Delta downscaling method. The dataset was evaluated by 496 national weather stations across China, and the evaluation indicated that the downscaled dataset is reliable for the investigations related to climate change across China. The dataset covers the main land area of China, including Hong Kong, Macao and Taiwan regions, and excluding islands and reefs in South China Sea.
The long-time series data set of extreme precipitation index in the arid region of Central Asia contains 10 extreme precipitation index long-time series data of 49 stations. Based on the daily precipitation data of the global daily climate historical data network (ghcn-d), the data quality control and outlier elimination were used to select the stations that meet the extreme precipitation index calculation. Ten extreme precipitation indexes (prcptot, SDII, rx1day, rx5day, r95ptot, r99ptot, R10, R20) defined by the joint expert group on climate change detection and index (etccdi) were calculated 、CWD、CDD)。 Among them, there are 15 time series from 1925 to 2005. This data set can be used to detect and analyze the frequency and trend of extreme precipitation events in the arid region of Central Asia under global climate change, and can also be used as basic data to explore the impact of extreme precipitation events on agricultural production and life and property losses.
The water level observation data set of lakes on the Tibetan Plateau contains the daily variations of water levels for three lakes: Zhari Namco, Bamco and Dawaco. The lake water level was obtained by a HOBO water level gauge (U20-001-01) installed on the lakeshore, then corrected using the barometer installed on the shore or pressure data of nearby weather stations, and then the real water level changes were obtained. The accuracy was less than 0.5 cm. The items of this data set are as follows: Daily variation data of water level in Zhari Namco from 2009 to 2014; Daily variation data of water level in Bamco from 2013 to 2014; Daily variation data of water level in Dawaco from 2013 to 2014. Water level, unit: m.
We compiled the Seismic Zonation Map of Western Asia using the ArcGIS platform through data collecting and digitization. The Seismic Zonation map of Western Asia covers Iran and its surrounding countries and regions. Based on the “Major active faults of Iran” map, the map is replenished with massive published data and depicts the location and nature of the seisogenic faults or active faults and the epicenter of earthquakes with M ≥ 5 from 1960 to 2019. The zonation map shows the mean values of peak ground acceleration (PGA) with 10% probability of being exceeded in 50 years. The two maps can not only be used in the research of active faults and seismic risks in Western Asia, but also will be applied to the seismic safety evaluation for infrastructure construction.
A total of 52 sample sites were selected in the desert belts of Qinghai and Tibet for field sampling of aboveground biomass of vegetation during the vegetation growing season in 2019 and 2020. At the same time, the longitude, latitude and altitude of the experimental site were recorded using handheld GPS devices. The field setting method of the quadrate is as follows: select a section with uniform vegetation. When the vegetation is relatively abundant, the quadrate is set as a 10 m x10 m square plot, and when the vegetation is relatively sparse, the quadrate is set as a 30 m x30 m square plot or a 30 m x90 m rectangular plot. 3-5 small sample boxes (1m x 1m) were randomly thrown into the set sample plot to determine the specific location of the sample. Collect plant samples by sample harvesting method: register plant species, number of plants of each species and other information in sample area of 1 square meter. All kinds of plants in the quadrate were planted and mowed on the ground, and the collected herbaceous plant samples were placed in archives and marked with species, sample site name and number, collection time and other information. They were brought back to the laboratory and dried to a constant weight in a constant temperature drying oven at 65 ℃. The dry weight of the plant samples was measured. Finally, the aboveground biomass of the vegetation was calculated. In addition, two kinds of remote sensing net primary productivity (NPP) data of the 52 sample points were extracted by the longitude and latitude of the sampling points. (1) Enhanced Vegetation Index (EVI) from 2000 to 2018, and calculated the annual Integrated Enhanced Vegetation Index (IEVI). IEVI was highly correlated with net primary productivity (NPP). Can be used as a proxy indicator of net primary productivity (He et al. 2021, Science of The Total Environment). (2) Percentage of remote sensing net primary productivity (NPP) and its quality control (QC) in 2001-2020, NPP remote sensing data from MOD17A3HGF Version 6 product (https://lpdaac.usgs.gov/products/mod17a3hgfv006/), the net photosynthetic value (the total primary productivity - keep breathing) is calculated. In the sample sites with low vegetation coverage, there may be null value (NA) of remote sensing net primary productivity.
The data set is the basic data of the Qinghai Tibet Plateau in 2015. The original data comes from the National Basic Geographic Information Center, and the data of the Qinghai Tibet plateau region is formed by splicing and clipping the segmented data. The data content includes 1:1 million provincial administrative divisions, 1:1 million roads and 1:250000 water system. The data attributes of administrative divisions include name, code and Pinyin; Road data attributes include: GB, RN, name, rteg and type (basic geographic information classification code, road code, road name, road grade and road type); Water system data attributes include: GB, hydc, name, period (basic geographic information classification code, water system name code, name, season).
Firefox
Chrome
Contact Support
Links
Help
Follow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn