WATER: Dataset of airborne microwave radiometers (K&Ka bands) mission in the Binggou watershed flight zone on Mar. 29, 2008

This data set was acquired by K & Ka band airborne microwave radiometer on March 29, 2008, in the Binggou watershed flight zone. Among them, K-band frequency is 18.7ghz, zenith angle observation, no polarization information; Ka band frequency is 36.0ghz, scanning imaging, scanning range ± 12 °, vertical polarization observation. The plane took off from Zhangye airport at 8:49 (Beijing time, the same below) and landed at 12:54. 9: At 25-12:08, 18 routes were flown according to the scheduled design, with a flight altitude of about 5000m and a flight speed of about 220-250km / hr. The original data is divided into two parts: microwave radiometer data and GPS data. The K-band of microwave radiometer belongs to non imaging observation, and the digital value obtained from instantaneous observation is recorded in the text file. Ka band belongs to imaging observation, which is different from L band and K band data. The original record of Ka band is hexadecimal text file. In data processing, the hexadecimal file needs to be converted to decimal system first, and then 112 data (the angle difference of each two data points is 24 / 112 = 0.214 degrees) are collected uniformly within the scanning range of 24 degrees. GPS data record the latitude and longitude of the flight and the aircraft attitude parameters. When using microwave radiometer to observe data, it is necessary to convert the digital value recorded into the bright temperature value according to the calibration coefficient (the calibration coefficient file is filed with the original observation data). At the same time, through the clock records of microwave radiometer and GPS, microwave observation and GPS record can be linked to match the geographical coordinate information for microwave observation. When processing Ka band data, the angle scanning effect should also be considered, and 112 data in the scanning period should be given geographical coordinate information respectively. Due to the coarse observation resolution of microwave radiometer, the effects of aircraft yaw, roll and pitch are generally ignored in data processing. According to the target and flight relative altitude (H), after calibration and coordinate matching, the observation information can also be gridded. The resolution (x) of K-band is consistent with that of observation footprint. The reference resolution is: x = 0.24h; the resolution of Ka band is 39m. After the above steps, we can get the products that users can use directly.

WATER: Dataset of airborne microwave radiometers (L&K bands) mission in the Biandukou-Linze flight zone on Jul. 4, 2008

This data set was acquired by L & K band airborne microwave radiometer on July 4, 2008, in the Biandukou-Linze flight zone. The frequency of L-band is 1.4GHz, and the backsight is 35 degrees to obtain dual polarization (H and V) information; the frequency of K-band is 18.7ghz, and there is no polarization information. The plane took off from Zhangye airport at 9:48 (Beijing time, the same below) and landed at 14:14. 10: At 16-11:40, the flight altitude was 3100-3500m and the flight speed was about 230-250km / hr. 12: 16-12:18 low flying Linze reservoir line 1-6, relative altitude 100m, flight speed 190km / hr. 12: At 26-13:42, he worked in Linze photography area, with a flight altitude of about 2000m and a flight speed of about 250km / hr. 13: 49-13:51 fly low again to Linze reservoir line 1-6. The original data is divided into two parts: microwave radiometer data and GPS data. The L and K bands of microwave radiometer are non imaging observations. The digital values obtained from the instantaneous observation are recorded in the text file, and the longitude and latitude as well as the aircraft attitude parameters are recorded in the GPS data. When using microwave radiometer to observe data, it is necessary to convert the digital value recorded into the bright temperature value according to the calibration coefficient (the calibration coefficient file is filed with the original observation data). At the same time, through the clock records of microwave radiometer and GPS, we can connect the microwave observation with GPS record and match the geographic coordinate information for the microwave observation. Due to the coarse observation resolution of microwave radiometer, the effects of aircraft yaw, roll and pitch are generally ignored in data processing. According to the target and flight relative altitude (H), after calibration and coordinate matching, the observation information can also be gridded. The resolution (x) of L band and K band is consistent with that of observation footprint. The reference resolution is: L band, x = 0.3H; K band, x = 0.24h. After the above steps, we can get the products that users can use directly.

WATER: Dataset of airborne microwave radiometers (L&K bands) mission in the A'rou flight zone in the morning of Apr. 1, 2008

This data set was acquired by the L & K band airborne microwave radiometer on the morning of April 1, 2008, in the A'rou flight zone. The frequency of L-band is 1.4GHz, and the backsight is 35 degrees to obtain dual polarization (H and V) information; the frequency of K-band is 18.7ghz, and there is no polarization information. The plane took off from Zhangye airport at 8:06 (Beijing time, the same below) and landed at 11:17. 8: 50-10:13 fly from north to south, observe and reserve 10 routes, flight height is about 4100m, flight speed is about 260km / hr. 10: At 20-10:35, Jiafei 6-8 and 6-9 lines completed the observation. The original data is divided into two parts: microwave radiometer data and GPS data. The L and K bands of microwave radiometer are non imaging observations. The digital values obtained from the instantaneous observation are recorded in the text file, and the longitude and latitude as well as the aircraft attitude parameters are recorded in the GPS data. When using microwave radiometer to observe data, it is necessary to convert the digital value recorded into the bright temperature value according to the calibration coefficient (the calibration coefficient file is filed with the original observation data). At the same time, through the clock records of microwave radiometer and GPS, we can connect the microwave observation with GPS record and match the geographic coordinate information for the microwave observation. Due to the coarse observation resolution of microwave radiometer, the effects of aircraft yaw, roll and pitch are generally ignored in data processing. According to the target and flight relative altitude (H), after calibration and coordinate matching, the observation information can also be gridded. The resolution (x) of L band and K band is consistent with that of observation footprint. The reference resolution is: L band, x = 0.3H; K band, x = 0.24h. After the above steps, we can get the products that users can use directly.

Integrated remote sensing joint experiment of Heihe River: alos PALSAR remote sensing data set (2008)

The phased array type l-land synthetic aperture radar (PALSAR) is a phased array L-band SAR sensor mounted on alos satellite. The sensor has three observation modes: high resolution, scanning synthetic aperture radar and polarization, which make it possible to obtain a wider ground width than the general SAR. At present, there are 13 scenes of ALOS pallsar data in Heihe River Basin. The coverage and acquisition time are as follows: 1 scene in the northeast of Zhangye City, HH / HV polarization, 2008-04-25; 2 scenes in Binggou basin + Arjun encrypted observation area, HH / HV polarization, 2008-05-122008-06-27; 2 scenes in Dayekou basin + Yingke oasis intensified observation area, HH / HV polarization, 2008-05-122008-06-27; observation station encrypted observation area Survey area + Linze station densified observation area + Linze grassland densified observation area 2 scenes, HH / HV polarization, time 2008-05-122008-06-27; Linze station densified observation area 1 scene, HH / HV polarization, time 2008-05-12; Binggou basin densified observation area 1 scene, HH / HV polarization, time 2008-07-14; bindukou densified observation area 4 scenes, 2008-04-25 2 scenes, HH / HV polarization, 2008-06-10 2 scenes, HH pole Change. The product level is L1 without geometric correction. The alos PALSAR remote sensing data set of Heihe comprehensive remote sensing joint experiment was obtained from JAXA by Dr. Takeo tadono, researcher Ye Qinghua and Professor Shi Jiancheng (the cooperation project between Qinghai Tibet Institute of Chinese Academy of Sciences and JAXA). (Note: "+" means to overwrite at the same time)

Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin (Miyun site-automatic weather station) (2008-2010)

The data set contains observations from the automatic weather station as at 1 solstice, January 2008, on 29 December 2010.The site is located in xinchengzi town, miyun county, Beijing, with orchards (plums and apple trees), corn/bare land, and towns.The latitude and longitude of the observation point is 117.3233E, 40.6308N, and the altitude is 350m. The acquisition frequency of the automatic weather station is 10s, and the output of 10min is once.The observation factors include air temperature and relative humidity (30.56m, 10.66m), and the direction is due to the north.Wind speed (30.56m, 10.66m), wind direction (30.56m), heading due north;Air pressure (installed in waterproof box);Rainfall (31.46m);The four-component radiation (30.76m) is oriented due to the south.Infrared surface temperature (30.76m), the arm is facing south, the probe is facing vertically downward;The soil temperature and humidity probe was buried 2m south of the meteorological tower. The buried depth of the soil temperature probe was 0cm, 5cm, 10cm, 20cm, 40cm, 60cm, 80cm and 100cm. The buried depth of the soil water sensor was 2cm, 5cm, 10cm, 20cm, 40cm, 60cm and 100cm.Two hot plates (2) are buried 2cm underground, one in the ground where the sun can penetrate the fruit trees, and the other in the shadow of the fruit trees.Processing and quality control of observation data :(1) ensure 144 data per day (every 10min). If data is missing, it will be marked by -6999;(2) eliminate the moments with duplicate records;(3) data that is obviously beyond the physical meaning or the range of the instrument is deleted;(4) the format of date and time is unified, and the date and time are in the same column.For example, the time is: June 10, 2010 at 10:30. Data released by the automatic weather station include:Date/Time for the Date/Time, and the air temperature humidity observation (Ta_10. 66 m, RH_10. 66 m, Ta_30. 56 m, RH_30. 56 m) (℃, %), wind speed (Ws_10. 66 m, Ws_30. 56 m) (m/s), wind (WD) (°), pressure (Press) (hpa), precipitation (Rain) (mm), four component radiation (DR, UR, DLR, ULR, Rn) (W/m2), the surface radiation temperature (IRT_1, IRT_2) (℃),Soil heat flux (Gs_1, Gs_2) (W/m2), multi-layer soil moisture (Ms_2cm, Ms_5cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_60cm, Ms_100cm) (%) and multi-layer soil temperature (Ts_0cm, Ts_5cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_60cm, Ts_80cm, Ts_100cm) (℃). Please refer to Jia et al,(2012) for information of observation test or site, and Liu et al,(2013) for data processing.

Ecological security evaluation and landscape planning data of the inner flow area of Hexi Corridor (1949-2002)

The project of ecological security evaluation and landscape planning in the inner flow area of hexi corridor belongs to the major research plan of "environment and ecological science in western China" of the national natural science foundation, led by researcher xiao duning of the institute of cold and dry environment and engineering, Chinese academy of sciences. The project runs from Jan. 2002 to Dec. 2004. The data of the project is the ecological data of the inner flow area of hexi corridor, including heihe basin, shiyang river basin, shule river basin and river runoff. Investigation and analysis data of ejin banner in heihe river area 1. Soil moisture TDR data The data is stored in Excel format and includes both tubular and well 2002 soil moisture survey data. Tube TDR data Tubular soil moisture survey data with 1.8m underground intervals of 0.2 m on June 1, June 11, June 21, July 1, July 11, July 21, July 31, August 11 and August 21, 2002, including erdaqiao, gobi, forest farm, qidaqiao and tseng forest. Well TDR data Data of well soil moisture survey on June 21, July 1, July 11, July 21, July 31, August 11 and August 21, 2002, which included willows, gobi, populus euphratica and weeds, with intervals of more than 5 meters and 0.2 meters underground. Groundwater GPS data In Excel format, the TDR observation points were measured by GPS, including basic information such as longitude, latitude and elevation, plus information such as water level, logging type and remarks. 2. Soil nutrient salinity data To Excel format, 42 samples containing "total oxygen N %", "total phosphorus P %", "% organic matter", "hydrolysis N N mg/kg", "organic P P mg/kg", "available K K mg/kg", "% calcium carbonate", "PH", "the % of salt" and "total potassium % K" nutrient investigation and analysis of data, such as 42 samples containing "conductance value (%) computing the salt", CO3, HCO3, CI, SO4, Ca, mg, Na + K salt investigation and analysis of data, etc. 3. Soil mechanical composition In Excel format, 42 sample points contained soil particle composition information analysis tables of depth (cm), percentage of particle content at each level (sieve analysis method) (>2mm, 2-1mm, 1-0.5mm, 0.5-0.25mm and 0.25-0.1mm) and percentage of particle content at each level (straw method) (<0.1mm, 0.1-0.05mm, 0.05-0.02mm, 0.02-0.002mm and <0.002mm). 4. Meteorological data of erqi station Is the Excel sheet, including rainfall data from 1957 to 1998, evaporation data from 1957 to 1998, temperature data from 1957 to 1991, wind speed data from 1972 to 1992, maximum temperature data from 1972 to 1992, minimum temperature data from 1972 to 1992, sunshine data from 1972 to 1992 and relative humidity data from 1972 to 1992. Scan copy of jiuquan area The scanning copy of the general map of land use status in jiuquan 1:300,000, the scanning copy of the evaluation map of the distribution of cultivated land reserve resources in jiuquan 1:300,000 and the scanning copy of the district map of jiuquan 1:300,000 Zhang ye water protection information It contains the statistics of water and soil conservation in the regions of ganzhou district, gaotai district, linze county, minle county, shandan county, sunan county and zhangye city in zhangye region (stored in Excel format) and the planning report of each region (stored in Word format). Shiyang river basin Jinchang water resources survey data It includes the scan of 1:50000 water resource distribution map of jinchang city in 1997, the average decline degree of groundwater level in qinghe and jinchuan irrigation areas in jinchang city from 81 to 2000, the statistical table of annual groundwater supply in 1986, 1995 and 2001, and the survey and evaluation report of cultivated land reserve resources in jinchang city. Survey data of water resources in minqin Includes detailed minqin county area typical Wells status per acre crops irrigation water use questionnaire, irrigation, industrial and agricultural water use questionnaire, seeded area of villages and towns questionnaire, the survey data of groundwater hardness index, minqin county of surface runoff and the runoff change situation report, irrigation water quota formulation of evaluation report, minqin county water resources development and utilization of report and opinion polls irrigation works report, etc. Zoning map of soil improvement and utilization in wuwei area For the scanning part of water and soil conservation planning map of wuwei city, the scanning part of the location map of wuwei irrigation area, the scanning part of the scanning part of the administrative map of wuwei city, the scanning part of the water source and water conservancy project construction map of wuwei city, the scanning part of the planning map of wuwei sanbei phase ii shelterbelt project and the scanning part of the administrative map of liangzhou district. Yongchang county water protection information It is the scanning copy of the soil and water conservation supervision, prevention and control plan of 1994 in yongchang county at 1:20000. Shule river basin Distribution map of water resources development and utilization in yumen city It consists of four jpeg images, a 1:250,000 general scanning map of yumen's water resources development and utilization in 2002, and three high-resolution sub-maps. River runoff This data set is stored in Excel format, mainly including the total flow of three basins from 1949 to 2002, the annual runoff of each tributary of the basin, the annual runoff of detailed investigation areas such as jiuquan and the upstream inflow of yuanyang pond reservoir. Total basin Is the annual runoff data of heihe river basin, shiyang river basin and shule river basin from 1949 to 2002. Annual runoff of black river Is the annual runoff data of heihe river, liyuan river, taolai river, hongshui river, qingshui river, fengle river and hongsha river from 1949 to 2002. Annual runoff of shiyang river Is the annual runoff data of xidahe river, dongdahe river, xiying river, jinta river, zama river, huangyang river, gulang river, dajing river and other tributaries from 1949 to 2002. Annual runoff of shule river Is the annual runoff data of dang river, shule river and harten river from 1950 to 2002. Annual river runoff in jiuquan area For the annual flow data of changma gorge of shule river, dangcheng bay of danghe river, junmiao of shule river, baiyang river, icegou of toulai river, yuanyang pond of toulai river, xindi of hongshui river, fengle river, hongsha river of maying river and suang river of yulin river in jiuquan region from 1950 to 2002. Statistics of upstream inflow of yuanyang pond reservoir The data are the upstream inflow data of yuanyang pond reservoir from 1959 to 2001.

Remote sensing experimental dataset of dayokou sub basin in Heihe River (2004)

On August 6, 2004, the institute of cold and drought, Chinese academy of sciences, organized a remote sensing experiment in the upper reaches of the heihe river basin, which obtained soil survey data of 14 sections, DEM of 1:500 scale in the drainage ditch basin, spectral data of typical features and synchronous ground observation data of dapingding TM and QuickBird satellite.It mainly includes: 1) spectral measurement data of typical ground objects The data mainly includes in continental river basin in linze county comprehensive research station near the station (hereinafter referred to as linze) of elaeagnus angustifolia, two poplars, tamarisk, bark, ephedra, sand, alfalfa, corn, cotton and salinization land spectra and dew ditch valley concept-people mei, grass, moss, alpine meadow grass, sword leaf thorns son, the spectra of soil and rock. 2) soil profile survey data Valley in line according to the altitude and vegetation types were set up 12 soil profile, and also in front of the row of dew ditch forest weather stations and linze weather station set up a soil profile 1, 14 were measured profile of soil moisture content, bulk density, adhering sand content and soil spectrum, dew ditch forest top weather stations and linze profile is measuring the thermal conductivity of soil and water parameters. 3) field measurement data of biophysical parameters of typical ground objects Standing near the corn, cotton, including linze small pine, alfalfa, and leaf area index measurement data of ephedra row dew in different heights with leaf photosynthesis, leaf area index data and vegetation features data (photosynthetic rate, stomatal conductance, intercellular CO2 concentration, leaf transpiration rate, leaf temperature) and the corresponding environmental factor data (air temperature, air relative humidity and atmospheric CO2 concentration, air, water content, atmospheric pressure, solar total radiation, photosynthetic active radiation). 4) ground synchronization test of remote sensing by large flat-topped satellite The simultaneous observation experiment of TM and QuickBird satellite was carried out in a relatively flat grass area (big flat roof) beside the drainage ditch watershed.On July 27, 2004, spectra, above-ground biomass and leaf area were measured at intervals of 15 meters in a 150m×150m quadrangular at a large flat roof.

Long-term SPOT_Vegetation data of the Heihe River Basin

The vegetation sensor, sponsored by the European Commission, was launched by SPOT-4 in March 1998. It has received the spotvgt data for global vegetation cover monitoring since April 1998. The data is received by Kiruna ground station in Sweden, and the image quality monitoring center in Toulouse in France is responsible for image quality and provides relevant parameters (such as calibration coefficient). Finally, Belgium is responsible for image quality monitoring The Flemish Institute for technical research (Vito) vegetation processing center (ctiv) is responsible for preprocessing the data into 1km global data day by day. Preprocessing includes atmospheric correction, radiometric correction, geometric correction, and 10 day production to maximize the synthesized NDVI data, and set the value of - 1 to - 0.1 to - 0.1, and then convert to the DN value of 0-250 through the formula DN = (NDVI + 0.1) / 0.004. The dataset is a subset of China, which contains four bands of spectra synthesized every 10 days. Spot measurement (VGT) data is downloaded from the vegetation data website of Vito Institute in Belgium (http://free.vgt.vito.be), which includes the following: Spot vegation NDVI data and four band data, 10 days maximum synthesis, spatial resolution of 1km, effective time of 1998-2008, data naming specification is coverage + product type + year + month + day. Spot vector BRDF data, 10 days maximum synthesis, spatial resolution of 8km, effective time of 2001-2008, data naming specification is coverage + product type + year + month + day. Spot vectorization NPP data, 10 day maximum synthesis, spatial resolution of 8km, effective time of 1998-2006, data naming standard of "Heihe ﹣ NPP ﹣ VGT" + [1 or 2] + [year + month + day].