We produced surface photosynthetic effective radiation (PAR), solar radiation (SSR) and net radiation (NR) products with 1KM resolution in the heihe basin in 2012.The temporal resolution ranges from instantaneous to hourly and daily.Day-by-day ancillary data were also produced, including aerosol optical thickness, moisture content, NDVI, snow cover, and surface albedo.Among them, PAR and SSR use the method of lookup table to directly invert by combining the stationary weather satellite and polar orbit satellite MODIS product.NR was calculated by analyzing the relationship between net short-wave and net surface radiation.Hourly instantaneous products are weighted by average and integral to obtain hourly and daily cumulative products.
0 2020-03-15
The dataset of intensive snow parameter measurements was obtained in the Binggou watershed foci experimental area on Mar. 11, 2008. Those provide reliable data for retrieval of snow parameters from remote sensing approaches. Observation items included the snow layer temperature by the probe thermometer, the snow grain size by the handheld microscope, snow density by the aluminum case, the snow surface temperature by the handheld infrared thermometer, and the snow-soil interface temperature by the handheld infrared thermometer in three plots in BG-Z. 4 points were selected and measured 4 times in each plot. Two files including raw data and preprocessed data (3 subfolders enclosed) on snow properties were archived; besides, profile pictures of each point were also included.
0 2019-05-23
Global warming and human activities have led to the degradation of permafrost and the collapse of permafrost, which have seriously affected the construction of permafrost projects and the ecological environment. Based on high-resolution satellite images, the permafrost of oboling in Heihe River Basin of Qinghai Tibet Plateau is taken as the research area, and the object-oriented classification technology of machine learning is used to extract the thermal collapse information in the research area. The results show that from 2009 to 2019, the number of thermal collapse increased from 12 to 16, and the total area increased from 14718.9 square meters to 28579.5 square meters, nearly twice. The combination of high spatial resolution remote sensing and object-oriented classification method has a broad application prospect in the monitoring of thermal thawing and collapse of frozen soil.
0 2020-03-14
The data sets include four sets of data obtained from the Scanning Multi-channel Microwave Radiometer (SMMR), Special Sensor Microwave Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS) sensors using passive microwave remote sensing inversion. SMMR was aboard the Nimbus-7 satellite, and its working period was from October 26, 1978 to July 8, 1987. Since July 1987, the data provided by the SSM/I and the SSMIS aboard the US Defense Meteorological Satellite Program (DMSP) satellite group have been used. The first three data sets contain sea ice concentration data, covering the Antarctic region with a spatial resolution of 25 km: (1) The data were obtained from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Version 1 by applying the NASA Team algorithm inversion. The temporal coverage is from November 1978 to February 2017, with a temporal resolution of one month. A bin file is stored every month. (2) The data source is the same as the first set. The temporal coverage is from 1978-10-26 to 2017-2-28. The temporal resolution is two days, and the spatial resolution is 25 km. A folder was stored every year, and a bin file was stored every other day. (3) The data were obtained from near-real-time DMSP SSMIS by applying the NASA Team algorithm inversion. The temporal coverage is from 2015-1-1 to 2018-2-3, and the temporal resolution is one day. A bin file is stored every day. Each file consists of a 300-byte file title (data time information, projection pattern, file name) and a 316*332 matrix. The fourth set of data is the sea ice coverage and sea ice area time series. The temporal coverage is from November 1978 to December 2017. This data set is a time series sequence of sea ice coverage and sea ice area in the Antarctic. The temporal resolution is one month, and an ASCII file is stored every month. Each file consists of a file title (time, data type), a 39*1 sea ice cover matrix and a 39*1 sea ice area matrix. For further details on the data, please visit the US Ice and Snow Data Center NSIDC website - Data Description http://nsidc.org/data/NSIDC-0051; http://nsidc.org/data/NSIDC-0081; http://nsidc.org/data/G02135
0 2020-06-03
The dataset of airborne WiDAS mission was obtained in the A'rou flight zone on Jul. 7, 2008. Due to cloud/cloud shadow influence, atmospheric correction could not be performed, and geometric registration was performed manually instead of automatic matching. Level-2B (after radiometric and manual geometric corrections) and mosaic images were available for users. For the visible near infrared band the resolution is 1.25m, Radiance was recorded (W/ (sr•m^2•nm);DN=Radiance*100000); for TIR band, the brightness temperature was recorded (℃; DN=Brightness_Temperature*100) . The flying time of each route was as follows: {| ! id ! flight ! relative height ! starttime ! endtime ! data size ! data state ! data quality ! ground targets |- | 1 || 6#1 || 1500m || 13:43:18 || 13:46:26 || 48 || incomplete || incomplete |- | 2 || 6#3 || 1500m || 13:52:26 || 13:55:18 || 43 || incomplete || incomplete |- | 3 || 6#5 || 1500m || 13:59:30 || 14:02:38 || 48 || incomplete || incomplete || A’rou freeze/thaw observation station |- | 4 || 6#7 || 1500m || 14:08:02 || 14:11:02 || 46 || incomplete || incomplete |}
0 2019-05-23
The aerosol optical thickness data of the Arctic Alaska station is based on the observation data products of the atmospheric radiation observation plan of the U.S. Department of energy at the Arctic Alaska station. The data coverage time is from 1998 to 2016, and the time resolution is hour by hour. The coverage site is the Arctic Alaska station, with the longitude and latitude coordinates of (71 ° 19 ′ 22.8 ″ n, 156 ° 36 ′ 32.4 ″ w). The source of the observed data is retrieved from the radiation data observed by mfrsr instrument. The optical characteristic variable is aerosol optical thickness, and the error range of the observed inversion is about 15%. The data format is NC format.
0 2020-01-12
The dataset of ground truth measurements synchronizing with airborne WiDAS mission was obtained in the Linze grassland foci experimental area on Jun. 29, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data were mainly the land surface temperature measured by the hand-held infrared thermometer in the reed plot A, the saline plots B and C and the barley plot E, the maximum of which were 120m×120m and the minimum were 30m×30m. Data were archived in Excel file. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental area of Linze station for more information.
0 2019-05-23
The data is clipped from "1: 1 million wetland data of China". "1: 1 million wetland data of China" mainly reflects the national marsh wetland information in the 2000s. It is expressed in geographic coordinates using the decimal degree. The main contents include: marsh wetland types, wetland water supply types, soil types, main vegetation types, geographical area, etc. Implemented the "Standard for Information Classification and Coding of Sustainable Development Information Sharing System of China". Data source of this database: 1:20 swamp map (internal version), Tibetan Plateau 1: 500,000 swamp map (internal version), swamp survey data 1: 1 million and national 1: 4 million swamp map; processing steps are: data source selection, preprocessing, digitization and encoding of marsh wetland elements, data editing processing, establishing topological relationships, edge processing, projection conversion, linking with attribute databases such as place names and obtaining attribute data.
0 2020-06-08
CMADS V1.0(The China Meteorological Assimilation Driving Datasets for the SWAT model Version 1.0)Version of the data set introduces the technology of STMAS assimilation algorithm . It was constructed using multiple technologies and scientific methods, including loop nesting of data, projection of resampling models, and bilinear interpolation. The CMADS series of datasets can be used to drive various hydrological models, such as SWAT, the Variable Infiltration Capacity (VIC) model, and the Storm Water Management model (SWMM). It also allows users to conveniently extract a wide range of meteorological elements for detailed climatic analyses. Data sources for the CMADS series include nearly 40,000 regional automatic stations under China’s 2,421 national automatic and business assessment centres. This ensures that the CMADS datasets have wide applicability within the country, and that data accuracy was vastly improved. The CMADS series of datasets has undergone finishing and correction to match the specific format of input and driving data of SWAT models. This reduces the volume of complex work that model builders have to deal with. An index table of the various elements encompassing all of East Asia was also established for SWAT models. This allows the models to utilize the datasets directly, thus eliminating the need for any format conversion or calculations using weather generators. Consequently, significant improvements to the modelling speed and output accuracy of SWAT models were achieved. Most of the source data in the CMADS datasets are derived from CLDAS in China and other reanalysis data in the world. The integration of air temperature, air pressure, humidity, and wind velocity data was mainly achieved through the LAPS/STMAS system. Precipitation data were stitched using CMORPH’s global precipitation products and the National Meteorological Information Center’s data of China (which is based on CMORPH’s integrated precipitation products). The latter contains daily precipitation records observed at 2,400 national meteorological stations and the CMORPH satellite’s inversion precipitation products.The inversion algorithm for incoming solar radiation at the ground surface makes use of the discrete longitudinal method by Stamnes et al.(1988)to calculate radiation transmission. The resolutions for CMADS V1.0, V1.1, V1.2, and V1.3 were 1/3°, 1/4°, 1/8°, and 1/16°, respectively. In CMADS V1.0 (at a spatial resolution of 1/3°), East Asia was spatially divided into 195 × 300 grid points containing 58,500 stations. Despite being at the same spatial resolution as CMADS V1.0, CMADS V1.1 contains more data, with 260 × 400 grid points containing 104,000 stations. For both versions, the stations’ daily data include average solar radiation, average temperature, average pressure, maximum and minimum temperature, specific humidity, cumulative precipitation, and average wind velocity. The CMADS comprises other variables for any hydrological model(under 'For-other-model' folder ): Daily Average Temperature, Daily Maximum Temperature, Daily Minimum Temperature, Daily cumulative precipitation (20-20h), Daily average Relative Humidity, Daily average Specific Humidity, Daily average Solar Radiation, Daily average Wind, and Daily average Atmospheric Pressure. Introduction to metadata of CMADS CMADS storage path description:(CMADS was divided into two datesets) 1.CMADS-V1.0\For-swat\ --specifically driving the SWAT model 2.CMADS-V1.0\For-other-model\ --specifically driving the other hydrological model(VIC,SWMM,etc.) CMADS--\For-swat-2009\ folder contain:(Station\ and Fork\) 1).Station\ Relative-Humidity-58500\ Daily average relative humidity(fraction) Precipitation-58500\ Daily accumulated 24-hour precipitation(mm) Solar radiation-58500\ Daily average solar radiation(MJ/m2) Tmperature-58500\ Daily maximum and minimum temperature(℃) Wind-58500\ Daily average wind speed(m/s) Where R, P, S, T, W+ dimensional grid number - the number of longitude grid is the station in the above five folders respectively.(Where R,P,S,T,W respective Daily average relative humidity,Daily cumulative precipitation(24h),Daily mean solar radiation(MJ/m2),Daily maximum and minimum temperature(℃) and Daily mean wind speed (m/s)) respectively.Data format is (.dbf) 2).Fork\ (Station index table over East Asia) PCPFORK.txt (Precipitation index table) RHFORK.txt (Relative humidity index table) SORFORK.txt (Solar radiation index table) TMPFORK.txt (Temperature index table) WINDFORK.txt (Wind speed index) CMADS--\For-swat-2012\ folder contain:(Station\ and Fork\) Storage structure is consistency with \For-swat- 2009\.However, all the data in this directory are only available in TXT format and can be readed by SWAT2012. 3)\For-other-model\ (Includes all weather input data required by the any hydrologic model (daily).) Atmospheric-Pressure-txt\ Daily average atmospheric pressure(hPa) Average-Temperature-txt\ Daily average temperature(℃) Maximum-Temperature-txt\ Daily maximum temperature(℃) Minimum-Temperature-txt\ Daily minimum temperature(℃) Precipitation-txt\ Daily accumulated 24-hour precipitation (mm) Relative-Humidity-txt\ Daily average relative humidity(fraction) Solar-Radiation-txt\ Daily average solar radiation(MJ/m2) Specific-Humidity-txt\ Daily average Specific Humidity(g/kg) Wind-txt\ Daily average wind speed(m/s) Data storage information: data set storage format is .dbf and .txt Other data information: Total data: 33.6GB Occupied space: 35.2GB Time: From year 2008 to year 2016 Time resolution: Daily Geographical scope description: East Asia Longitude: 60°E The most east longitude: 160°E North latitude: 65°N Most southern latitude: 0°N Number of stations: 58500 stations Spatial resolution: 1/3 * 1/3 * grid points Vertical range: None
0 2020-06-23
This dataset is the first 1: 100,000 desert spatial database in China based on the graphic data of desert thematic maps. It mainly reflects the geographical distribution, area size, and mobility of sand dunes in China. According to the system design requirements and relevant standards, the input data is standardized and uniformly converted into a standard format for various types of data input. Build a library to run the delivery system. This project uses the TM image in 2000 as the information source, and interprets, extracts, and edits the coverage of the national land use map and TM digital image information in 2000. It uses remote sensing and geographic information system technology to 1: 100,000 Thematic mapping requirements for scale bar maps were made on the desert, sandy land and gravel Gobi in China. The 1: 100,000 desert map across the country can save users a lot of data entry and editing work when they are engaged in research on resources and the environment. Digital maps can be easily converted into layout maps The dataset properties are as follows: Divided into two folders e00 and shp: Desert map name and province comparison table in each folder 01 Ahsm Anhui 02 Bjsm Beijing 03 Fjsm Fujian 04 Gdsm Guangdong 05 Gssm Gansu 06 Gxsm Guangxi Zhuang Autonomous Region 07 Gzsm Guizhou 08 Hebsm Hebei 09 Hensm Henan 10 Hljsm Heilongjiang 11 Hndsm Hainan 12 Hubsm Hubei 13 Jlsm Jilin Province 14 Jssm Jiangsu 15 Jxsm Jiangxi 16 Lnsm Liaoning 17 Nmsm Inner Mongolia Gu Autonomous Region 18 Nxsm Ningxia Hui Autonomous Region 19 Qhsm Qinghai 20 Scsm Sichuan 21 Sdsm Shandong 22 Sxsm Shaanxi Province 23 Tjsm Tianjin 24 Twsm Taiwan Province 25 Xjsm Xinjiang Uygur Autonomous Region 26 Xzsm Tibet Autonomous Region 27 Zjsm Zhejiang 28 Shxsm Shanxi 1. Data projection: Projection: Albers False_Easting: 0.000000 False_Northing: 0.000000 Central_Meridian: 105.000000 Standard_Parallel_1: 25.000000 Standard_Parallel_2: 47.000000 Latitude_Of_Origin: 0.000000 Linear Unit: Meter (1.000000) 2. Data attribute table: area (area) perimeter ashm_ (sequence code) class (desert encoding) ashm_id (desert encoding) 3. Desert coding: mobile sandy land 2341010 Semi-mobile sandy land Semi-fixed sandy land 2341030 Gobi 2342000 Saline land 2343000 4: File format: National, sub-provincial and county-level desert map data types are vector shapefiles and E00 5: File naming: Data organization based on the National Basic Resources and Environmental Remote Sensing Dynamic Information Service System is performed on the file management layer of Windows NT. The file and directory names are compound names of English characters and numbers. Pinyin + SM composition, such as the desert map of Gansu Province is GSSM. The flag and county desert map is the pinyin + xxxx of the province name, and xxxx is the last four digits of the flag and county code. The division of provinces, districts, flags and counties is based on the administrative division data files in the national basic resources and environmental remote sensing dynamic information service operation system.
0 2020-03-29
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn