• 大沁他拉1:10万沙漠化发展程度图(1958)

    1. The data is digitized in the map of the development degree of desertification in daqintara (1958) from the drawing. The specific information of the map is as follows: * chief editor: zhu zhenda, qiu xingmin * editor: wang yimou * drawing: feng yu-sun, yao fa-fen, wu wei, wang jianhua, wang zhou-long * cartographic unit: desert laboratory, Chinese academy of sciences * publishing house: xi 'an map publishing house, unified isbn: 12461.26 二. The data is stored in ESRI Shapefile format, including the following layers: 1, * desertification development degree map (1958) : desertification1958.shp 2, * double river: river_double-shp 3, * single river: river_single-shp 4, Road: SHP 5, Lake: lake.shp 6, street: Stree. SHP 7, Railway: Railway. SHP 8, forest belt: Tree_networks 9. Residential land: residential. SHP 10. Map: map_margin.shp 三, desertification development degree figure property fields and encoding attribute: (1) desertification degree (Type) : a flow of sand (Semi - shifting Sandy Land), sand form class (Shapes), grass (Grassland), forest Land, Woodland and forest density (W_density), the cultivated Land (Farmland) (2) sand Shapes: Barchan Dunes, Flat Sandy Land, undulated Sandy Land, Vegetated Dunes (3) the grass (Grassland) (4) Woodland: Woodland. (5) woodland density (W_density): Sparse Woodlot (6) Farmland: Dryfarming and Abandoned Farmland, Irrigated Fields

    0 2020-03-10

  • 黑河生态水文遥感试验:大野口流域2米DEM数据

    Trough the select tasking, we obtained the WorldView-2 stereo image data in Dayekou Basin production in mid-May 2012. In the same year from July to August, 27 GPS ground control points (GCP) and checkpoints were measured based on the watershed differential GPS control network. Based on the full-field GCPs, the rational polynomial coefficients (RPC) files of WorldView-2 images were corrected in the digital photogrammetry software system. In the stereo model, 60 high-precision tie points evenly distributed were got through image matching technology, and the 1-m and 2-m resolution digital elevation model (DEM) were rapid extracted. Moreover, the DEM was edited in some key areas, such as the shady forest coverage and Dayekou reservoir. The terrain feature points and line data were added to improve the accuracy of the results in large variation of terrain feature. Check points were composed of GPS points and model confidential points, which used for quantitative validation. And they root mean square errors RMSE were 1.9 meters and 1.2 meters respectively, which achieve the requirements of two degree accuracy of 2.0 m at a scale of 1:2000 in high mountains.

    0 2019-09-15

  • 黑河排露沟流域2800m 2012-2013年海拔青海云杉林土壤水分数据集

    Soil moisture, also known as soil humidity. It is the moisture that remains in the pore space of the soil. The main source of soil moisture in Qinghai spruce forest is atmospheric precipitation, which is the only source of water absorption of Qinghai spruce to survive. The data is the soil moisture of Qinghai spruce forest in Pailugou of Heihe River Basin measured by the EM50 soil moisture meter produced in the United States.

    0 2019-09-12

  • 天山北麓诸河流域道路分布数据集(2000)

    The data is the road distribution dataset of the river basins at the north slope of the Tianshan Mountains, with a scale of 250000 and a projection of latitude and longitude, including the spatial distribution and attribute data of the main roads in the river basins at the northern foot of the Tianshan Mountains, with attribute fields of code (road code) and Name (road classification).

    0 2020-04-06

  • 黑河生态水文遥感试验:水文气象观测网数据集(农田站涡动相关仪-2013)

    This dataset contains the flux measurements from the cropland eddy covariance system (EC) in the lower reaches of the Heihe hydrometeorological observation network from 14 July to 11 December, 2013. The site (101.134° E, 42.005° N) was located in the muskmelon surface, Ejin Banner in Inner Mongolia. The elevation is 875 m. The EC was installed at a height of 3.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&EC150) was 0 m. The raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), as proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened using a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.2 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Due to the CF card storage problem and calibration of CO2/H2O gas analyzer, data during 29 July to 19 August and 11 December to 31 December were missing. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

    0 2019-09-15

  • 黑河流域临泽平川灌区土壤容重、灌溉试验和田间持水量空间分布数据(2012)

    In the transition zone from Heihe River to desert oasis in Pingchuan oasis of Linze, soil texture, bulk density, field capacity, saturated water capacity, soil organic matter, total nitrogen and inorganic carbon content were studied. PH value, electrical conductivity, total carbon, SiC and C / N were monitored to determine the physical and chemical properties of 0-20cm topsoil and the soil particle size composition of 0-20cm and 20-80cm soil layers. According to the soil properties of five different soil in cotton field, cotton irrigation experiment was carried out: irrigation amount, seed cotton yield, straw parameters, lint percentage, coat index, seed index, single boll weight, flower rate before frost, unit boll number, single boll weight, irrigation water productivity, etc.

    0 2020-07-30

  • 黑河流域临泽平川灌区土壤容重、灌溉试验和田间持水量空间分布数据(2012)

    In the transition zone from Heihe River to desert oasis in Pingchuan oasis of Linze, soil texture, bulk density, field capacity, saturated capacity, soil organic matter, total nitrogen and inorganic carbon content of 118 plots were studied. PH value, conductivity, total carbon, SiC, C / N were monitored to determine the physical and chemical properties of 0-20cm arable soil, and the soil particle composition of 0-20cm and 20-80cm soil layers.

    0 2020-02-22

  • 第三极1:100万机场及跑道分布数据集(2014)

    Third Pole 1:100,000 airport and runway data set include:airport(Tibet_Airport)and(Tibet_Airport_runways) vector space data set and its attribute name:Airport name(Name)、Name of airport(CNTRY_NAME)、Airport country abbreviation(CNTRY_CODE)、latitude(LATITUDE)、longitude(LONGITUDE). The data comes from the 1:100,000 ADC_WorldMap global data set,The data through topology, warehousing and other data quality inspection,Data through the topology, into the library,It's comprehensive, up-to-date and seamless geodigital data. The world map coordinate system is latitude and longitude, D_WGS_1984 datum surface

    0 2019-09-12

  • 黑河流域土壤粒径分布数据集

    The source data of this data set comes from the 1:1 million soil map of China (Shi et al., 2004) and 8595 soil sections in the second Soil Census. The polygonal connection method is used to connect the soil profile with the soil map to obtain the soil sand, silt and clay content map. The distance between the profile and the map spot, the number of soil profiles and the information of soil classification are taken into account. Please refer to related papers and web pages for specific instructions. Data characteristics Projection: GCS_Krasovsky_1940 Coverage: Heihe River Basin Resolution: 0.00833 degrees (about one kilometer) Data format: FLT, tiff Value range: 0% - 100% Document description Floating point grid files include: Sand1.flt, clay1.flt - content of sand and clay in the surface layer (0-30cm). Sand2.flt, clay2.flt - sand and clay content in the bottom layer (30-100cm). Psd.hdr – header file: Ncols - number of columns Nrows - number of rows Xllcorner - lower left latitude Yllcorner - lower left longitude Cellsize - cell size NoData_Value – null byteorder - LSBFIRST, Least Significant Bit First TIFF grid files include: Sand 1.tif, clay 1.tif - the content of sand and clay in the surface layer (0-30cm). Sand 2.tif, clay 2.tif - sand and clay content in the bottom layer (30-100cm). For data details, please refer to: http://globalchange.bnu.edu.cn/research/soil

    0 2020-06-05

  • 黑河流域生态水文综合地图集:黑河流域植被类型图

    "Heihe River Basin Ecological hydrological comprehensive atlas" is supported by the key project of Heihe River Basin Ecological hydrological process integration research. It aims at data arrangement and service of Heihe River Basin Ecological hydrological process integration research. The atlas will provide researchers with a comprehensive and detailed background introduction and basic data set of Heihe River Basin. The vegetation type map of Heihe River Basin is one of the land surface part of the atlas, with scale of 1:2500000, positive axis equal conic projection and standard latitude of 25 47 n. Data sources: 1:1 million vegetation type map of Heihe River Basin, road data of Heihe River Basin in 2010, administrative boundary data of Heihe River Basin in 2008, residential area data of Heihe River Basin in 2009, and 100000 river data of 2009.

    0 2020-03-05

  • 黑河综合遥感联合试验:扁都口加密观测区Envisat ASAR地面同步观测数据集(2008年3月14日)

    The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in C1, W2 and B2 of the Biandukou foci experimental area on Mar. 14, 2008, from 23:30 on 14 to 1:00 on 15, to be specific. The ASAR data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 23:21 BJT. The wheat stubble land, the deep plowed land and the rape stubble land were chosen for measurements. (1) The surface radiative temperature and the physical temperature were measured by the handheld infrared thermometer. Besides, the land cover type was also recorded. The data can be opened by Microsoft Office. (2) The gravimetric soil moisture (samples from 0-1cm, 1-3cm, 3-5cm, 5-10cm and 10-20cm) was measured by the microwave drying method. (3) The frost depth by the chopstick and the ruler. The soil was considered frozen when it was hard and with ice crystal. The data can be opened by Microsoft Office. Four data files were included, ASAR data, C1, W2 and B2 data.

    0 2019-09-12