• 气溶胶光学特性地基观测数据--青藏高原珠峰站纳木错站 V1.0(2017-2019)

    The aerosol optical thickness data of Qomolangma station and Namuco station in the Qinghai Tibet Plateau is based on the observation data products of Qomolangma station and Namuco station from the atmospheric radiation view of the Institute of Qinghai Tibet Plateau of the Chinese Academy of Sciences. The data coverage time is from 2017 to 2019, the time resolution is hour by hour, the coverage sites are Qomolangma station and Namuco station, the longitude and latitude coordinates are (Qomolangma station: 28.365n, 86.948e, Namuco station Mucuo station: 30.7725n, 90.9626e). The source of the observed data is retrieved from the radiation data observed by mfrsr instrument. The characteristic variable is aerosol optical thickness, and the error range of the observed inversion is about 15%. The data format is TXT.

    0 2020-10-14

  • 黑河生态水文遥感试验:水文气象观测网数据集(景阳岭站自动气象站-2013)

    This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Jingyangling station between 15 August, 2013, and 31 December, 2013. The site (101.116° E, 37.838° N) was located on a cold meadow surface in the Jingyangling, Qilian County, Qinghai Province. The elevation is 3750 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45AC; 5 m, north), wind speed and direction profile (034B; 10 m, north), air pressure (CS100; in the tamper box on the ground), rain gauge (TE525M; 10 m), four-component radiometer (CNR1; 6 m, south), two infrared temperature sensors (SI-111; 6 m, south, vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (109-L; 0, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and soil moisture profile (CS616; -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), and soil moisture (Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The radiation data were missing because of wiring problem. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

    0 2019-09-14

  • 乌兰布和沙漠与库布奇沙漠风沙活动数据(2011-2012)

    I. overview The data set includes wind and sand activity data of Ulanbuh Desert and Kubuqi Desert along the upper Yellow River from April to May 2011 and April 2012, mainly including wind speed profile, surface roughness, wind-sand flow structure, sand transport rate data under different vegetation coverage and different parts of sand dunes. II. Data Processing Instructions The wind speed and direction are observed by 014A wind speed sensor 024A wind direction sensor and CR200 data acquisition instrument produced by MetOne company, and the sediment transport amount is observed by stepped sediment collection instrument. III. Description of Data Content The data are stored in EXCEL table, mainly including wind speed profile, surface roughness, wind-sand flow structure and sand transport rate data under different vegetation coverage. IV. Data Usage Instructions This paper evaluates the sandstorm hazards along the Yellow River, estimates the amount of sandstorm entering the Yellow River in the upper reaches of the Yellow River, and provides data support for the establishment of an early warning system for sandstorm hazards in the region.

    0 2020-03-29

  • 黑河流域祁连山天老池流域雷达反演参数数据集(2013)

    Leaf area index (LAI), as a structural parameter of vegetation canopy, is an important input parameter for many inversion models such as energy and biomass inversion model. Firstly, vegetation points and ground points are separated in Terrasolid software. Then the transmittance of laser points is calculated, and the transmittance is the proportion of ground points to all points. After laser pulse hits the canopy, some energy passes through the voids between branches and leaves and continues to move forward until the energy is blocked, so some laser points will finally reach the ground. In this study, the ratio of the energy passing through the avoids to the energy of the canopy is used as the Laser Penetration Index (LPI). The LPI of each sample point at each scale in the study area was calculated.

    0 2019-09-14

  • 黑河流域1km分辨率地表反照率数据集(2001-2012)

    The Global LAnd Surface Satellite albedo product was produced by using MODIS data product of 1km Surface reflectance (MOD/MYD09GA), Angular Bin inversion algorithm and statistics-based Temporal Filter algorithm based on statistical knowledge.This data set is in the GLASS global products using the two tiles covering the heihe river basin (h25v04, h25v05), after a Mosaic, projection transformation, and cutting the heihe river basin 1 km resolution epicontinental black empty albedo (black - sky albedo) and white empty albedo (white - sky albedo) data sets, including both Albers and UTM projection method, are raw format, space vector boundary of heihe river basin is the scope of the rectangle, temporal resolution for eight days.

    0 2020-03-08

  • 黑河综合遥感联合试验:张掖市区太阳分光光度计观测数据集(2008年3月30日至4月2日)

    The dataset of sun photometer observations was obtained in the Zhangye city foci experimental areas (38°56′8.9″N, 100°27′8.3″E, 1400m) from Mar. 30 to Apr. 2, 2008. Measurements were carried out by CE318 for 1640nm, 1020nm, 936nm, 870nm, 670nm, 550nm, 440nm, 380nm and 340nm, and column water vapor by 936 nm data on Mar. 30 and 31, Apr. 1 and 2, 2008. Accuracy of CE318 could be influenced by local air pressure, instrument calibration parameters, and convertion factors. (1) Most air pressure was derived from elevation-related empiricism, which was not reliable. For more accurate result, simultaneous data from the weather station are needed. (2) Errors from instrument calibration parameters need correcting. Thus field calibration based on Langly or interior instrument calibrationcin the standard light is required. (3) Convertion factors for retrieval of aerosol optical depth and the water vapor of the water vapor channel were also from empiricism, and need further checking. Raw data were archived in k7 format and can be opened by ASTPWin. ReadMe.txt is attached for detail. Preprocessed data (after retrieval of the raw data) in Excel format are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. Langley was used for the instrument calibration. Two parts are included in CE318 result data (see “Geometric Positions and the Total Optical Depth of Each Channel” and “Rayleigh Scattering and Aerosol Optical Depth of Each Channel”).

    0 2019-05-23

  • 安徽省1:100万湿地数据(2000)

    The data was compiled from "China's 1:100,000 wetland data". "China 1:100,000 wetland data" mainly reflects the information of marshes and wetlands throughout the country in the 2000s, and is represented by geographical coordinates in decimal scale. The main contents include: types of marshes and wetlands, types of water supply, types of soil, types of main vegetation, and geographical regions.The information classification and coding standard of China sustainable development information sharing system was implemented.Data source of this database: 1:20 swamp map (internal version), 1:500 000 swamp map (internal version) of qinghai-tibet plateau, 1:100 000 swamp survey data and 1:400 000 swamp map of China;The processing steps are as follows: data source selection, preprocessing, marshland element digitization and coding, data editing and processing, establishment of topological relationship, edge-to-edge processing, projection transformation, connection with attribute database such as geographical name and acquisition of attribute data.

    0 2020-05-28

  • 祁连山综合观测网:黑河流域地表过程综合观测网(阿柔超级站涡动相关仪-2018)

    This dataset contains the flux measurements from the A’rou superstation eddy covariance system (EC) in the upperstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2018. The site (100.372° E, 38.856° N) was located in the Daban Village, near Qilian County in Qinghai Province. The elevation is 3033 m. The EC was installed at a height of 3.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Data during insufficient power supply, data were missing occasionally. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

    0 2020-07-25

  • 黑河生态水文遥感试验:非均匀下垫面地表蒸散发的多尺度观测试验-通量观测矩阵数据集(4号点涡动相关仪)(2012年5月-9月)

    This dataset contains the flux measurements from site No.4 eddy covariance system (EC) in the flux observation matrix from 31 May to 17 September, 2012. The site (100.35753° E, 38.87752° N) was located in a residential area in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1561.87 m. The EC was installed at a height of 4.2 m (6.2 m after 19 August); the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. Raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

    0 2019-09-15

  • 黑河流域数字土壤制图产品:三维土壤粉粒含量分布数据集

    According to the global soil map. Net standard, the 0-1m soil depth is divided into 5 layers: 0-5cm, 5-15cm, 15-30cm, 30-60cm and 60-100cm. According to the principle of soil landscape model, the spatial distribution data products of soil silt content in different layers are made by using the digital soil mapping method. The American system classification is used as the standard of soil particle classification. The source data of this data set comes from the soil profile data integrated by the major research plan integration project of Heihe River Basin (soil data integration and soil information product generation of Heihe River Basin, 91325301). Scope: Heihe River Basin; Projection: WGS · 1984 · Albers; Spatial resolution: 100M; Data format: TIFF; Dataset content: hh_silt_layer1.tif: 0-5cm soil silt content; hh_silt_layer2.tif: 5-15cm soil silt content; hh_silt_layer3.tif: 15-30cm soil silt content; hh_silt_layer4.tif: 30-60cm soil silt content; hh_silt_layer5.tif:60-100cm soil silt content;

    0 2020-06-01