黑河生态水文遥感试验:黑河流域中游覆盖度和生物量观测数据集(2013)

本数据包括大满超级站、湿地、沙漠、荒漠和戈壁五个站点植被一个生长周期内的覆盖度数据集以及大满超级站玉米和湿地芦苇两种植被一个生长周期内的生物量数据集。观测时间自2013年5月19日开始,9月15日结束。 1覆盖度观测 1.1观测时间 1.1.1超级站:观测时间段2013年5月20日-9月15日, 7月31日以前每5天观测一次,7月31后每10天观测一次,共做了18次观测,具体观测时间如下; 超级站:2013-5-20、2013-5-25、2013-5-30、2013-6-5、2013-6-10、2013-6-16、2013-6-22、2013-6-27、2013-7-2、2013-7-7、2013-7-12、2013-7-17、2013-7-27、2013-8-3、2013-8-13、2013-8-25、2013-9-5、2013-9-15 1.1.2其它四个站:观测时间段2013年5月20日-9月15日,每10天观测一次,共做了12次观测,具体观测时间如下; 其它四个站:2013-5-20、2013-6-5、2013-6-16、2013-6-27、2013-7-7、2013-7-17、2013-7-27、2013-8-3、2013-8-13、2013-8-25、2013-9-5、2013-9-15 1.2观测方法 1.2.1测量仪器与原理: 采用数码相机拍照的方法测量,将数码相机置于简易支撑杆前端的仪器平台,保持拍摄的竖直向下,远程控制相机测量数据。观测架可以用来改变相机的拍摄高度,面向不同类型植被实现有针对性的测量。 1.2.2样方的设计 超级站:共取3块样地,每块样地样方大小10×10米,每样地每次测量时沿两条对角线依次拍照,共取9-10张照片; 湿地站:共取2块样地,每块样地样方大小10×10米,每样地每次测量拍9-10张照片; 其它3个站:选取1块样地,每块样地样方大小10×10米,每样地每次测量拍9-10张照片; 1.2.3拍摄方法 针对超级站玉米和湿地站芦苇,直接采用观测架观测,保证观测架上的相机距离植被冠层的高度远大于植被冠幅,在方形样方内沿着对角线采样,然后做算术平均。在视场角度不大(<30°)的情况下,视场内包括大于2个整周期的垄行,相片的边长与垄行平行;其它三个站点由于植被比较低矮,直接用相机垂直向下拍照(未使用支架)。 1.2.4 覆盖度计算 覆盖度计算由北京师范大学完成,采用一种自动分类方法,具体见 “建议参考文献”第1条文献。通过RGB颜色空间转换到更容易区分绿色植被的Lab空间,对绿度分量a的直方图进行聚类,分离出绿色植被和非绿色背景2组分,获得单张相片的植被覆盖度。该方法的优点在于其算法简单、易于实现而且自动化程度和精度较高。今后还需要更多的快速、自动、准确的分类方法,最大限度发挥数码相机方法的优势。 2生物量观测 2.1观测时间 2.1.1玉米:观测时间段2013年5月20日-9月15日, 7月31日以前每5天观测一次,7月31后每10天观测一次,共做了18次观测,具体观测时间如下; 玉米:2013-5-20、2013-5-25、2013-5-30、2013-6-5、2013-6-10、2013-6-16、2013-6-22、2013-6-27、2013-7-2、2013-7-7、2013-7-12、2013-7-17、2013-7-27、2013-8-3、2013-8-13、2013-8-25、2013-9-5、2013-9-15 2.1.2芦苇:观测时间段2013年5月20日-9月15日,每10天观测一次,共做了12次观测,具体观测时间如下; 芦苇:2013-5-20、2013-6-5、2013-6-16、2013-6-27、2013-7-7、2013-7-17、2013-7-27、2013-8-3、2013-8-13、2013-8-25、2013-9-5、2013-9-15 2.2观测方法 玉米:选取3块样地,每块样地每次观测选取代表样地平均水平的三株玉米分别称每株玉米的鲜重(地上生物量+地下生物量)和相应的干重(85℃恒温烘干),根据种植的株距和行距计算单位面积玉米的生物量; 芦苇:设置2个0.5mÍ0.5m的样方,齐地刈割,分别称取芦苇的鲜重(茎叶)和干重(85℃恒温烘干)。 2.3观测仪器 天平(精度0.01g)、烘箱。 3数据的存储 所有观测数据先手薄记录后整理到Excel表中存储,同时整理了玉米种植结构数据,包括种植的株距、行距,种植时间、灌水时间、除父本时间以及收割时间等相关信息。

青藏高原台站雪深数据集(V1.0)(1961-2013)

青藏高原平均海拔4000m以上,是北半球中低纬度海拔最高、积雪覆盖最大的地区。积雪不仅是青藏高原季节性变化最大的下垫面和重要的生态环境组成要素,冰雪融水是高原及其下游地区重要的水资源。同时,高原积雪作为一种重要的陆面强迫因子,与东亚、南亚季风以及长江中下游的旱涝等灾害性天气紧密相关,是短期气候预测的重要指示因子和全球气候变化最为敏感的响应因子之一。积雪深度是指积雪表面到地面的垂直深度,是表征积雪特征的重要参数和常规气象观测要素之一,是估算雪水当量、研究积雪气候效应、流域水量平衡和融雪径流模拟以及监测和 评估雪灾发生和等级划分的重要参数。 在本数据集中,青藏高原边界采用了以自然地貌为主导因素,同时综合考虑海拔高度、高原面和山地完整性原则确定的高原范围。高原主体部分在西藏自治区和青海省,面积257.2万km²,约占我国陆地总面积的26.8%。雪深观测数据是经过质量检测和质量控制的逐月最大雪深资料。研究范围内共有102个气象站,多数始建于20世纪50-70年代,部分站点在这一时期存在有,些月份或年份缺测情况,最后采用了1961-2013年有完整观测记录的时间。时间分辨率为逐日,覆盖范围为青藏高原,其所有数据进行了质量控制。准确而详实的高原雪深数据对气候变化诊断、亚洲季风的演变和区域融雪水资源的管理具有重要意义。

全球Cryosat-2 GDR数据集(V1.0)(2010-2016)

全球Cryosat-2 GDR数据集由欧空局(ESA)制作,数据覆盖时间从2010年到2016年,覆盖范围为全球。 2010年4月8号,ESA发射了Cryosat - 2高倾斜极轨卫星。该卫星上搭载了合成孔径干涉雷达高度计SIRAL,主要用于监测极地的冰层厚度和海冰厚度变化,进而研究极地冰层的融化对全球海平面上升的影响,以及全球气候变化对南极冰厚的影响。这种高度计工作在Ku波段,工作频率为13.575 GHz,包括3种测量模式:一是低分辨率指向星下点的高度计测量模式(LRM),可获得陆地、海洋和冰盖所有表面观测值,它的处理过程与ENVISAT/RA - 2 类似,沿轨分辨率为5到7 km;二是合成孔径雷达(SAR)测量模式,主要为提高海冰观测精度和分辨率,可使沿轨分辨率达到250 m左右;三是干涉合成孔径雷达模式(InSAR),主要为提高冰盖或冰架边缘等地形复杂区域精度。 Cryosat -2/SIRAL数据产品主要包括0级数据、1b级数据、2级数据和高级数据。Cryosat - 2/SIRAL产品由XML头文件(.HDR)和数据产品文件(.DBL)两个文件组成,HDR文件是辅助性的ASCII文件,用于快速识别检索数据文件。1b级产品是按照测量模式分开存储的,不同模式的数据记录格式也有所不同。LRM模式和SAR模式的每个波形有128个采样点,SARIn模式的波形则有512个采样点。2级GDR产品可以满足大多数的科学研究应用,包括了测量时间、地理位置、高度等信息。并且,GDR产品中的高度信息已经经过了仪器校正、传输延迟改正、几何改正和地球物理改正(如大气改正与潮汐改正)。GDR产品是单独的全球性的全轨道数据,即三种模式的测量结果,经过不同的处理过程后,按照时间先后顺序,合并到一起,从而统一了数据记录格式。三种模式的数据采用了不同的波形重跟踪算法来获得高度值,在最新更新的Baseline C数据中,LRM模式的数据采用了3种算法,分别为Refined CFI、UCL和Refined OCOG。

青藏高原1976年冰川数据-TPG1976(V1.0)

本数据集是1976年青藏高原冰川数据,使用了205景Landsat MSS/TM卫星多光谱遥感数据,其中189景(覆盖青藏高原研究区92%)在1972-79年,而116景为1976/77年。但藏东南地区由于云、雪的影响,高质量MSS数据不能获得,因此,藏东南部分区域通过逐年筛选,使用了所能获得最早的高质量Landsat TM数据,包括14景1980s(1981,1986-89,覆盖青藏高原研究区6.5%)和2景1994年数据(覆盖青藏高原研究区1.5%)。所用遥感数据,77%为冬季数据;61%为1976/1977年Landsat MSS/TM影像数据,因此,1976年为本数据集代表年份。本数据集冰川数据是青藏高原净冰川覆盖范围,不包括表碛覆盖部分。数据格式是TIFF,可以为青藏高原冰川变化、冰川水文研究提供基础数据支持。 数据内容:冰川编号FID_smglac,基于Albers等积圆锥投影计算的冰川面积area_km2,所在流域在我国冰川编目中冰川流域的二级编码code, 所在流域在我国冰川编目中冰川流域一级编码First_code,所在流域中文名称name,所在流域英文名称Ename,冰川斑块周长Peremeter(km),斑块中心点X坐标(decimal degree), 斑块中心点Y坐标(decimal degree)。 数据的投影方式:Albers等积圆锥投影。 格网单元:30m 数据加工方法:基于205/16景Landsat MSS/TM卫星数据,校正、镶嵌为假彩色合成影像(MSS, RGB:321;TM, RGB:543),采用人工目视解译方法,参考不同波段比值法结果,结合SRTM DEM V4.1数据与Google Earth 同一年不同季节的影像,剔除了山体阴影、季节性积雪的影响,参考我国第一期和第二期冰川编目数据,剔除了非冰川区陡崖、裸露基岩等,综合提取净冰川专题矢量数据,不包括冰川末端位置不清的表碛物覆盖区域,冰川边界数字化精度为半个像元(30m)。通过对比分析,可知基于多数据源、参考多方法结果、综合专家经验知识人-机互动方法获得的数据更准确。具体数据提取方法详见参考文献: Ye, Q., J.Zong,L.Tian et al. (2017). Glacier changes on the Tibetan Plateau derived from Landsat imagery: mid-1970s – 2000 – 2013. Journal of Glaciology,63(238), 273-87. DOI:10.1017/jog.2016.137 原始遥感资料数据精度:60m。 数据质量控制措施:冰川边界数字化精度控制在半个像元之内(30m)。 加工后数据精度:通过分析典型区数据,最大误差为4%。TPG1976总体数据误差为6.4%。 项目来源:中国科学院战略性先导科技专项(A类)(XDA19070302),第二次青藏高原综合科学考察研究资助(2019QZKK0202),中国科学院“十三五”信息化建设专项资助(XXH13505-06), 国家自然科学基金项目(41530748, 91747201)。

青藏高原2001年冰川数据-TPG2001(V1.0)

本数据集是2001年青藏高原冰川数据,使用了150景Landsat7 TM/ETM+卫星多光谱遥感数据,时间主要从1999年至2002年,72%来源于2000/2001年,71%遥感数据成像于冬季。冰川数据是青藏高原净冰川覆盖范围,不包括表碛物覆盖部分。数据格式是TIFF,可以为青藏高原冰川变化、冰川水文研究提供基础数据支持。 数据内容:冰川编号FID_smglac,基于Albers等积圆锥投影计算的冰川面积area_km2,所在流域在我国冰川编目中冰川流域的二级编码code, 所在流域在我国冰川编目中冰川流域一级编码First_code,所在流域中文名称name,所在流域英文名称Ename,冰川斑块周长Peremeter(km),斑块中心点X坐标(decimal degree), 斑块中心点Y坐标(decimal degree)。 格网单元:30m 数据的投影方式:Albers等积圆锥投影。 数据加工方法:基于150景Landsat7 TM(ETM+)卫星数据,校正、镶嵌为假彩色合成影像(TM/ETM+, RGB:543),采用人工目视解译方法,参考波段比值法结果,结合SRTM DEM V4.1数据与Google Earth 同一年不同季节的影像,剔除了山体阴影、季节性积雪的影响,参考我国第一期和第二期冰川编目数据,剔除了非冰川区的陡崖、裸露基岩等,综合提取净冰川专题矢量数据,不包括冰川末端位置不清的表碛物覆盖区域,冰川边界数字化精度为半个像元(15m)。通过对比分析,可知基于多数据源、参考多方法结果、综合专家经验知识人-机互动方法提取获得的山地冰川矢量数据更准确。具体数据提取方法详见参考文献: Ye, Q., J.Zong,L.Tian et al. (2017). Glacier changes on the Tibetan Plateau derived from Landsat imagery: mid-1970s – 2000 – 2013. Journal of Glaciology,63(238), 273-87. DOI:10.1017/jog.2016.137 原始遥感资料数据精度:30m。 数据质量控制措施:冰川边界数字化精度控制在半个像元之内(15m)。 加工后数据精度:TPG2001总体数据误差在3.8%。 项目来源:中国科学院战略性先导科技专项(A类)(XDA19070302),第二次青藏高原综合科学考察研究资助(2019QZKK0202),中国科学院“十三五”信息化建设专项资助(XXH13505-06),国家自然科学基金项目(41530748, 91747201)。