黑河生态水文遥感试验:黑河流域中游植被覆盖度数据集(2012.05.25-09.14)

本数据为盈科绿洲农田、湿地、戈壁、沙漠与荒漠观测的一个生长周期内的植被覆盖度数据集。数据观测从2012年5月25日开始到9月14日结束,7月下旬之前每5天观测1次,之后10天观测1次。 测量仪器与原理: 采用数码相机拍照的方法测量了盈科绿洲的农田、湿地、戈壁、沙漠与荒漠的典型地物的植被覆盖度。样方的设计、照片拍摄方法和数据处理方法都经过一定的分析和考虑。 具体分几条进行描述: 0. 测量仪器:简易观测架搭配数码相机,将数码相机置于支撑杆前端的仪器平台,保持拍摄的竖直向下,远程控制相机测量数据。观测架可以用来改变相机的拍摄高度,面向不同类型植被实现有针对性的测量。 1. 样方设置和“真值”获取:玉米等低矮植被样方大小10×10米,果树样方30米×30米。每次测量时沿两条对角线依次拍照,共取9张照片(当地表覆盖非常均一时也有少于9张的情况),均匀分布在样方内。9张相片处理得到各自覆盖度之后取平均,最终得到一个样方的覆盖度“真值”。 2. 拍摄方法:针对低矮植被如玉米,直接采用观测架观测,保证观测架上的相机距离植被冠层的高度远大于植被冠幅,在方形样方内沿着对角线采样,然后做算术平均。在视场角度不大(<30°)的情况下,视场内包括大于2个整周期的垄行,相片的边长与垄行平行;针对较高植被如果树,在树冠下面从下向上拍摄照片,叠加配合对树冠下地表低矮植被从上向下的拍摄,得到植株附近的覆盖度,再拍摄植株之间非树冠投影区域的低矮植被,计算植株间隙的覆盖度。最后通过树冠投影法,获得树冠的平均面积。根据垄行距离计算植株树冠下与植株间隙的面积比例,加权获得整个样方的覆盖度。 3. 数据处理方法:采用一种自动分类方法,具体见“参考文献”第3条文献(Liu et al., 2012)。通过RGB颜色空间转换到更容易区分绿色植被的Lab空间,对绿度分量a的直方图进行聚类,分离出绿色植被和非绿色背景2组分,获得单张相片的植被覆盖度。该方法的优点在于其算法简单、易于实现而且自动化程度和精度较高。今后还需要更多的快速、自动、准确的分类方法,最大限度发挥数码相机方法的优势。 配套数据: 在记录表中文字记录了植被的种类、株高、垄宽、行宽、拍摄高度信息,同时附有数码相机拍摄的场景照片和田埂照片(农田)。 数据处理: 基于数字图像里面的分类方法,对植被和非植被像元分类后得到相片代表样方的植被覆盖度。

青藏高原多年冻土分布现状图件(2003)

青藏高原被称为“世界第三极”和“亚洲水塔”,一个较为准确的青藏高原冻土图对当地寒区工程和环境建设有着重要意义。因此,为了满足工程和环境需求,通过多源遥感数据(高程、MODIS地表温度、植被指数和土壤水分)建立决策树对青藏高原多年冻土和季节冻土进行了划分。数据为栅格格式,DN=1为多年冻土;DN=2为季节冻土。 其中高程数据来自于1kmx1km的中国DEM(Digital Elevation Model)数据集(http://westdc.westgis.ac.cn);地表温度是欧阳斌等通过 Sin-Linear 法拟合后的日平均地表温度年均值。文中在MODIS 地表度产品用Sin-Linear 法拟合估算出日平均地表温度基础上,为了缩小与已有冻土图前后时间差异,以研究区2003年地表温度做为冻土分类的信息源;植被信息采用Aqua 和Terra 星的2003 年 16 天合成产品数据(MYD13A1 和 MOD13A1)提取植被指数值;土壤水分值根据 2003 年 AMSR-E观测质量较好的5月份升轨数据得到。因此,基于以上数据信息,以1:300万青藏高原冻土图和1:400万<<中国冰川冻土沙漠图>>为先验信息得到决策树的分类阈值,从而对青藏高原的冻土类型进行分类。 最后,对于分类结果利用西昆仑山、改则和温泉的调查冻土图以及其它已有的青藏高原冻土图进行了验证和对比,统计结果显示基于多源遥感信息的青藏高原冻土图多年冻土面积占青藏高原总面积的42.5%(111.3 × 104 km²),季节冻土面积占青藏高原总面积的53.8% (140.9 × 104 km²),这个结果与先验图(1:300万青藏高原冻土图)具有较好的一致性。此外,文中基于不同冻土图之间的总体精度和Kappa系数表明:不同方法编制或模拟的青藏高原冻土图在空间分布格局上基本保持一致,而分类不一致的地方大部分在多年冻土与季节冻土的分界边缘地带。

NSIDC南极海冰数据集(1978-2017)

该套南极海冰数据集共包括四套数据,均来自SMMR、SSM/I和SSMI/S三个传感器,采用被动微波遥感反演。其中SMMR为Nimbus-7卫星搭载的扫描式多通道微波辐射计,工作周期为1978年10月26日至1987年7月8日。1987年7月至今,使用美国国防卫星计划DMSP卫星群上搭载的一系列被动微波遥感数据SSM/I和微波成像专用传感器SSMIS提供的数据。 前三套为海冰密集度数据,覆盖范围为南极地区,空间分辨率为25 km: (1)数据来自Nimbus-7 SMMR和DMSP SSM/I-SSMIS Version 1,利用NASA Team算法反演得到,覆盖时间从1978年11月到2017年2月,时间分辨率为逐月,数据每月存放一个bin文件; (2)数据来源与第一套相同,覆盖时间从1978-10-26到2017-2-28,时间分辨率为两天,空间分辨率为25km,数据每年存放一个文件夹,每隔一天存放一个bin文件; (3)数据来自Near-Real-Time DMSP SSMIS,利用NASA Team算法反演得到,覆盖时间从2015-1-1到2018-2-3,时间分辨率为逐日,数据每日存放一个bin文件;每个文件由300-byte的文件头(数据时间信息、投影方式、文件名…)和316*332的矩阵组成。 第四套数据为海冰覆盖范围和海冰面积时间序列。覆盖时间从1978年11月到2017年12月,为南极地区海冰覆盖范围、海冰面积的时间演变序列,时间分辨率为逐月,每月存放一个ASCII文件;每个文件由表头(时间、数据类型…)和39*1的海冰覆盖矩阵和39*1的海冰面积矩阵组成。 数据的详细情况见美国冰雪数据中心NSIDC网站-数据说明http://nsidc.org/data/NSIDC-0051;http://nsidc.org/data/NSIDC-0081;http://nsidc.org/data/G02135