Bacterial post-treatment products and conventional water quality parameters of some lakes in the third pole in 2015

The data set of bacterial post-treatment products and conventional water quality parameters of some lakes in the third pole in 2015 collected the bacterial analysis results and conventional water quality parameters of some lakes in the Qinghai Tibet Plateau during 2015. Through sorting, summarizing and summarizing, the bacterial post-treatment products of some lakes in the third pole in 2015 are obtained. The data format is excel, which is convenient for users to view. The samples were collected by Mr. Ji mukan from July 1 to July 15, 2015, including 28 Lakes (bamuco, baimanamuco, bangoso (Salt Lake), Bangong Cuo, bengcuo, bieruozhao, cuo'e (Shenza), cuo'e (Naqu), dawaco, dangqiong Cuo, dangjayong Cuo, Dongcuo, eyaco, gongzhucuo, guogencuo, jiarehbu Cuo, mabongyong Cuo, Namuco, Nier CuO (Salt Lake), Norma Cuo, Peng yancuo (Salt Lake), Peng Cuo, gun Yong Cuo, Se lincuo, Wu rucuo, Wu Ma Cuo, Zha RI Nan Mu Cuo, Zha Xi CuO), a total of 138 samples. The extraction method of bacterial DNA in lake water is as follows: the lake water is filtered onto a 0.45 membrane, and then DNA is extracted by Mo bio powerOil DNA kit. The 16S rRNA gene fragment amplification primers were 515f (5'-gtgccagcmgcgcggtaa-3') and 909r (5'-ggactachvggtwtctaat-3'). The sequencing method was Illumina miseq PE250. The original data were analyzed by mothur software, including quality filtering and chimera removal. The sequence classification was based on the silva109 database. The archaeal, eukaryotic and unknown source sequences had been removed. OTU classifies with 97% similarity and then removes sequences that appear only once in the database. Conventional water quality detection parameters include dissolved oxygen, conductivity, total dissolved solids, salinity, redox potential, nonvolatile organic carbon, total nitrogen, etc. The dissolved oxygen is determined by electrode polarography; Conductivity meter is used for conductivity; Salinity is measured by a salinity meter; TDS tester is used for total dissolved solids; ORP online analyzer was used for redox potential; TOC analyzer is used for non-volatile organic carbon; The water quality parameters of total nitrogen were obtained by Spectrophotometry for reference.

Post-processing products of the Circumpolar Arctic and Tibetan Plateau Vegetation Correction Index 2013 and 2018

NDVI reflects the background effects of plant canopy, such as soil, wet ground, snow, dead leaves, roughness, etc., and is related to vegetation cover. It is one of the important parameters to reflect the crop growth and nutrient information. According to this parameter, the N demand of crops in different seasons can be known, which is an important guide to the reasonable application of N fertilizer. Correct NDVI (C-NDVI) is the value of NDVI after excluding the influence of climate elements (temperature, precipitation, etc.) on NDVI. Taking precipitation as an example, studies on the lag effect of precipitation on vegetation growth show that the lag time of precipitation effects varies in different regions due to differences in vegetation composition and soil types. In this study, we post-processed the MODIS NDVI data and firstly correlated the NDVI value of the current month with the precipitation of the current month, the average value of the precipitation of the current month with that of the previous month, and the average value of the precipitation of the current month with that of the previous two months to determine the optimal lag time. The NDVI was regressed on precipitation and air temperature to obtain the correlation coefficients, and then the corrected NDVI values were calculated by the difference between the MODIS NDVI and the NDVI regressed on climate factors. We corrected NDVI using climate data to give reliable vegetation correction indices for the circum-Arctic Circle (range north of 66°N) and the Tibetan Plateau (range 26°N to 39.85°N and 73.45°E to 104.65°E) for 2013 and 2018. The spatial resolution of the data is 0.5 degrees and the temporal resolution is monthly values.

Post-processing products for typical year ice bacteria distribution in the Tripolar regions (2010-2018)

The microbial reprocessing products of polar ice and snow in typical years collected the analysis results of bacteria sampled from glaciers, Glacial Snow and ice in the polar regions and the Qinghai Tibet Plateau from 2010 to 2018. Through sorting, summarizing and summarizing, the post-processing data products of soil microorganisms in the three pole region are obtained, and the data format is excel, which is convenient for users to view. Among them, the prokaryotes of Glacial Snow and ice in the polar regions and Qinghai Tibet Plateau are the sequences of bacterial 16S ribosomal RNA gene collected by teacher Liu Yongqin's experimental group from NCBI database from 2010 to 2018. The collected sequences calculate the similarity between sequences by using dotour software. Sequences with a similarity of more than 97% are clustered into an OTU, and OTU representative sequences are defined. OTU representative sequences were compared with RDP database through "Classifier" software, and were identified to the first level when the reliability was greater than >80%; The glaciers on the Qinghai Tibet Plateau were collected from 2010 to 2018, including the bacterial 16S ribosomal RNA gene sequence of seven glaciers on the Qinghai Tibet Plateau (East Rongbu glacier on Mount Everest, Tianshan No. 1 glacier, Guliya glacier, Laohugou glacier, muzitang glacier, July 1st glacier and yuzhufeng glacier) isolated by teacher Liu Yongqin's experimental group, Malan glacier isolated by teacher Xiang Shurong and ruogangri glacier isolated by teacher Zhang Xinfang. Glacier samples were collected and brought back to the ecological Laboratory of the Institute of Qinghai Tibet Plateau Research in Beijing and the Lanzhou cryosphere National Laboratory. After coating the plate, it was cultured at different temperatures (4-25 ℃) for 20-90 days, and a single colony was picked for purification. The isolated bacteria extracted DNA, amplified 16S ribosomal RNA gene fragments with 27f/1492r primers, and sequenced with Sanger method. 16S ribosomal RNA gene sequence was compared with RDP database through "Classifier" software, and was identified to the first level when the reliability was greater than >80%.