• Plant functional types (PFT) is a combination of large plant species according to the ecosystem function and resource utilization mode of plant species. Each planting functional type shares similar plant attributes, which simplifies the diversity of plant species into the diversity of plant function and structure.The concept of plant-functional has been advocated by ecologists especially ecosystem modelers.The basic assumption is that globally important ecosystem dynamics can be expressed and simulated through limited plant functional types.At present, vegetation-functional model has been widely used in biogeographic model, biogeochemical model, land surface process model and global dynamic vegetation model. For example, the land surface process model of the national center for atmospheric research (NCAR) in the United States has changed the original land cover information into the applied plant-functional map (Bonan et al., 2002).Functional plant has been used in the dynamic global vegetation model (DGVM) to predict the changes of ecosystem structure and function under the global change scenario. 1. Functional classification system of Plant 1 Needleleaf evergreen tree, temperate 2 Needleleaf evergreen tree, boreal 3 Needleleaf deciduous tree 4 Broadleaf evergreen tree, tropical 5 Broadleaf evergreen tree, temperate 6 Broadleaf deciduous tree, tropical 7 Broadleaf deciduous tree, temperate 8 Broadleaf deciduous tree, boreal 9 Broadleaf evergreen shrub, temperate 10 Broadleaf deciduous shrub, temperate 11 Broadleaf deciduous shrub, boreal 12 C3 grass, arctic 13 C3 grass 14 C4 grass 15 Crop 16 Permanent wetlands 17 Urban and built-up lands 18 Snow and ice 19 Barren or sparsely vegetated lands 20 Bodies of water 2. Drawing method China's 1km plant function map is based on the climate rules of land cover and plant function conversion proposed by Bonan et al. (Bonan et al., 2002).Ran et al., 2012).MICLCover land cover map is a blend of 1:100000 data of land use in China in 2000, the Chinese atlas (1:10 00000) the type of vegetation, China 1:100000 glacier map, China 1:10 00000 marshes and MODIS land cover 2001 products (MOD12Q1) released the latest land cover data, using IGBP land cover classification system.The evaluation shows that it may be the most accurate land cover map on the scale of 1km in China.Climate data is China's atmospheric driven data with spatial resolution of 0.1 and temporal resolution of 3 hours from 1981 to 2008 developed by he jie et al. (2010).The data incorporates Princeton land-surface model driven data (Sheffield et al., 2006), gewex-srb radiation data (Pinker et al., 2003), TRMM 3B42 and APHRODITE precipitation data, and observations from 740 meteorological stations and stations under the China meteorological administration.According to the evaluation results of RanYouhua et al. (2010), GLC2000 has a relatively high accuracy in the current global land cover data set, and there is no mixed forest in its classification system. Therefore, the mixed forest in the MICLCover land cover diagram USES GLC2000 (Bartholome and Belward, 2005).The information in xu wenting et al., 2005) was replaced.The data can be used in land surface process model and other related researches.

    View Details
  • This data set is based on China's second inventory data, Landsat series optical image data with a spatial resolution of 30 meters and cloud coverage of less than 10% and SRTM and other data using ArcGIS, ENVI, Google Earth and other processing software and extracting the glacial lake boundary within 10 km of the glacier boundary by artificial visual interpretation. In addition, the data set adds attributes such as glacial lake type, the mountain range, the province, and the basin to the data as well as quality checking and accuracy verification for the interpreted data. The spatial resolution is 30 meters. It consists of two parts: the glacial lake distribution area vector file and the Inventory Data set of glacial lakes in west China in 2015. It can provide reference data for glacial lake-glacier coupling, water resource utilization and management in west China and can also be used as basic data for regional climate change and cryospheric studies.

    View Details
  • Based on the analysis of brgdgts and hydrogen isotopes of leaf wax in lake sediments from Tengchong Qinghai (tcqh) in Yunnan Province, this study shows for the first time the high-resolution annual average temperature change history of low latitude land since the last glacial period (since the last 88000 years). According to the annual average temperature of South Asia established by tcqh core, there are two warm periods of 88000-71000 years and 45000-22000 years in this region, and the temperature range is about 2-3 ° C. Since the Holocene, the temperature has been increasing for about 1-2 years ° C。

    View Details
  • We comprehensively estimated water volume changes for 1132 lakes larger than 1 km2. Overall, the water mass stored in the lakes increased by 169.7±15.1 Gt (3.9±0.4 Gt yr-1) between 1976 and 2019, mainly in the Inner-TP (157.6±11.6 or 3.7±0.3 Gt yr-1). A substantial increase in mass occurred between 1995 and 2019 (214.9±12.7 Gt or 9.0±0.5 Gt yr-1), following a period of decrease (-45.2±8.2 Gt or -2.4±0.4 Gt yr-1) prior to 1995. A slowdown in the rate of water mass increase occurred between 2010 and 2015 (23.1±6.5 Gt or 4.6±1.3 Gt yr-1), followed again by a high value between 2015 and 2019 (65.7±6.7 Gt or 16.4±1.7 Gt yr-1). The increased lake-water mass occurred predominately in glacier-fed lakes (127.1±14.3 Gt) in contrast to non-glacier-fed lakes (42.6±4.9 Gt), and in endorheic lakes (161.9±14.0 Gt) against exorheic lakes (7.8±5.8 Gt) over 1976−2019.

    View Details
  • Effective evaluation of future climate change, especially prediction of future precipitation, is an important basis for formulating adaptation strategies. This data is based on the RegCM4.6 model, which is compatible with multi-model and different carbon emission scenarios: CanEMS2 (RCP 45 and RCP85), GFDL-ESM2M (RCP2.6, RCP4.5, RCP6.0 and RCP8.5), HadGEM2-ES (RCP2.6, RCP4.5 And RCP8.5), IPSL-CM5A-LR (RCP2.6, RCP4.5, RCP6.0 and RCP8.5), MIROC5 (RCP2.6, RCP4.5, RCP6.0 and RCP8.5). The future climate data (2007-2099) has 21 sets, with a spatial resolution at 0.25 degrees and the temporal resolution at 3 hours (or 6 hours), daily and yearly scales.

    View Details
  • A comprehensive understanding of the permafrost changes in the Qinghai Tibet Plateau, including the changes of annual mean ground temperature (Magt) and active layer thickness (ALT), is of great significance to the implementation of the permafrost change project caused by climate change. Based on the CMFD reanalysis data from 2000 to 2015, meteorological observation data of China Meteorological Administration, 1 km digital elevation model, geo spatial environment prediction factors, glacier and ice lake data, drilling data and so on, this paper uses statistics and machine learning (ML) method to simulate the current changes of permafrost flux and magnetic flux in Qinghai Tibet Plateau The range data of mean ground temperature (Magt) and active layer thickness (ALT) from 2000 to 2015 and 2061 to 2080 under rcp2.6, rcp4.5 and rcp8.5 concentration scenarios were obtained, with the resolution of 0.1 * 0.1 degree. The simulation results show that the combination of statistics and ML method needs less parameters and input variables to simulate the thermal state of frozen soil, which can effectively understand the response of frozen soil on the Qinghai Tibet Plateau to climate change.

    View Details
  • This dataset is the monthly precipitation data of China, with a spatial resolution of 0.0083333 ° (about 1km) and a time range of 1901.1-2021.12. The data format is NETCDF, i.e.. Nc format. This dataset is generated in China through the Delta spatial downscaling scheme based on the global 0.5 ° climate dataset released by CRU and the global high-resolution climate dataset released by WorldClim. In addition, 496 independent meteorological observation point data are used for verification, and the verification results are reliable. This data set covers the main land areas in China (including Hong Kong, Macao and Taiwan), excluding islands and reefs in the South China Sea. In order to facilitate storage, the data are all int16 type and stored in nc files, with precipitation units of 0.1mm. NC data can be mapped using ArcMAP software; Matlab software can also be used for extraction processing. Matlab has released the function to read and store nc files. The read function is ncread, and switch to the nc file storage folder. The statement is expressed as: ncread ('XXX.nc ',' var ', [i j t], [leni lenj lent]), where XXX.nc is the file name, and is the string required' '; Var is from XXX The variable name read in NC. If it is a string, '' is required; i. J and t are the starting row, column and time of the read data respectively, and leni, lenj and lent i are the length of the read data in the row, column and time dimensions respectively. In this way, this function can be used to read in any region and any time period in the study area. There are many commands about NC data in the help of Matlab, which can be viewed. WGS84 is recommended for data coordinate system.

    View Details
  • This data set comprises the plateau soil moisture and soil temperature observational data based on the Tibetan Plateau, and it is used to quantify the uncertainty of model products of coarse-resolution satellites, soil moisture and soil temperature. The observation data of soil temperature and moisture on the Tibetan Plateau (Tibet-Obs) are from in situ reference networks at four regional scales, which are the Nagqu network of cold and semiarid climate, the Maqu network of cold and humid climate, and the Ali network of cold and arid climate,and Pali network. These networks provided representative coverage of different climates and surface hydrometeorological conditions on the Tibetan Plateau. - Temporal resolution: 1hour - Spatial resolution: point measurement - Measurement accuracy: soil moisture, 0.00001; soil temperature, 0.1 °C; data set size: soil moisture and temperature measurements at nominal depths of 5, 10, 20, 40 - Unit: soil moisture, cm ^ 3 cm ^ -3; soil temperature, °C

    View Details
  • This data set is collected from the supplementary information part of the paper: Yao, T. , Thompson, L. , & Yang, W. . (2012). Different glacier status with atmospheric circulations in tibetan plateau and surroundings. Nature Climate Change, 1580, 1-5. This paper report on the glacier status over the past 30 years by investigating the glacial retreat of 82 glaciers, area reductionof 7,090 glaciers and mass-balance change of 15 glaciers. This data set contains 8 tables, the names and content are as follows: Data list: The data name list of the rest tables; t1: Distribution of Glaciers in the TP and surroundings; t2: Data and method for analyzing glacial area reduction in each basin; t3: Glacial area reduction during the past three decades from remote sensing images in the TP and surroundings; t4: Glacial length fluctuationin the TP and surroundings in the past three decades; t5: Detailed information on the glaciers for recent mass balance measurement in the TP and surroundings; t6: Recent annual mass balances in different regions in the TP; t7: Mass balance of Long-time series for the Qiyi, Xiaodongkemadi and Kangwure Glaciers in the TP. See attachments for data details: Supplementary information.pdf, Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings.pdf.

    View Details
  • This biophysical permafrost zonation map was produced using a rule-based GIS model that integrated a new permafrost extent, climate conditions, vegetation structure, soil and topographic conditions, as well as a yedoma map. Different from the previous maps, permafrost in this map is classified into five types: climate-driven, climate-driven/ecosystem-modified, climate-driven/ecosystem protected, ecosystem-driven, and ecosystem-protected. Excluding glaciers and lakes, the areas of these five types in the Northern Hemisphere are 3.66×106 km2, 8.06×106 km2, 0.62×106 km2, 5.79×106 km2, and 1.63×106 km2, respectively. 81% of the permafrost regions in the Northern Hemisphere are modified, driven, or protected by ecosystems, indicating the dominant role of ecosystems in permafrost stability in the Northern Hemisphere. Permafrost driven solely by climate occupies 19% of permafrost regions, mainly in High Arctic and high mountains areas, such as the Qinghai-Tibet Plateau.

    View Details