• China's second glacier inventory uses the high-resolution Landsat TM/ETM+ remote sensing satellite data as the main glacier boundary data source and extracts the data source with the latest global digital elevation model, SRTM V4, as the glacier attribute, using the current international ratio threshold segmentation method to extract the glacier boundary in bare ice areas. The ice ridge extraction algorithm is developed to extract the glacier ice ridge, and it is used for the segmentation of a single glacier. At the same time, the international general algorithm is used to calculate the glacier attributes, so that the vector data and attribute data that contain the glacier information of the main glacier regions in west China are obtained. Compared with some field GPS field measurement data and higher resolution remote sensing images (such as from QuickBird and WorldView), the glacial vector data in the second glacier inventory data set of China have higher positioning accuracy and can meet the requirements for glacial data in national land, water conservancy, transportation, environment and other fields. Glacier inventory attributes: Glc_Name, Drng_Code, FCGI_ID, GLIMS_ID, Mtn_Name, Pref_Name, Glc_Long, Glc_Lati, Glc_Area, Abs_Accu, Rel_Accu, Deb_Area, Deb_A_Accu, Deb_R_Accu, Glc_Vol_A, Glc_Vol_B, Max_Elev, Min_Elev, Mean_Elev, MA_Elev, Mean_Slp, Mean_Asp, Prm_Image, Aux_Image, Rep_Date, Elev_Src, Elev_Date, Compiler, Verifier. For a detailed data description, please refer to the second glacier inventory data description.

    View Details
  • The data set was produced based on the SRTM DEM data collected by Space Shuttle Radar terrain mission in 2016, the reference data such as river, lake and other water system auxiliary data , using the arcgis hydrological model to analyze and extract the river network. There are 12 sub-basins over the Tibet Plateau, including AmuDayra、Brahmaputra、Ganges、Hexi、Indus、Inner、Mekong、Qaidam、Salween、Tarim、Yangtze、Yellow. The outer boundary is based on the 2500-metre contour line and national boundaries.

    View Details
  • DEM is the English abbreviation of Digital Elevation Model, which is the important original data of watershed topography and feature recognition.DEM is based on the principle that the watershed is divided into cells of m rows and n columns, the average elevation of each quadrilateral is calculated, and then the elevation is stored in a two-dimensional matrix.Since DEM data can reflect local topographic features with a certain resolution, a large amount of surface morphology information can be extracted through DEM, which includes slope, slope direction and relationship between cells of watershed grid cells, etc..At the same time, the surface flow path, river network and watershed boundary can be determined according to certain algorithm.Therefore, to extract watershed features from DEM, a good watershed structure pattern is the premise and key of the design algorithm. Elevation data map 1km data formed according to 1:250,000 contour lines and elevation points in China, including DEM, hillshade, Slope and Aspect maps. Data set projection: Two projection methods: Equal Area projection Albers Conical Equal Area (105, 25, 47) Geodetic coordinates WGS84 coordinate system

    View Details
  • The field observation platform of the Tibetan Plateau is the forefront of scientific observation and research on the Tibetan Plateau. The land surface processes and environmental changes based comprehensive observation of the land-boundary layer in the Tibetan Plateau provides valuable data for the study of the mechanism of the land-atmosphere interaction on the Tibetan Plateau and its effects. This dataset integrates the 2005-2016 hourly atmospheric, soil hydrothermal and turbulent fluxes observations of Qomolangma Atmospheric and Environmental Observation and Research Station, Chinese Academy of Sciences (QOMS/CAS), Southeast Tibet Observation and Research Station for the Alpine Environment, CAS (SETORS), the BJ site of Nagqu Station of Plateau Climate and Environment, CAS (NPCE-BJ), Nam Co Monitoring and Research Station for Multisphere Interactions, CAS (NAMORS), Ngari Desert Observation and Research Station, CAS (NADORS), Muztagh Ata Westerly Observation and Research Station, CAS (MAWORS). It contains gradient observation data composed of multi-layer wind speed and direction, temperature, humidity, air pressure and precipitation data, four-component radiation data, multi-layer soil temperature and humidity and soil heat flux data, and turbulence data composed of sensible heat flux, latent heat flux and carbon dioxide flux. These data can be widely used in the analysis of the characteristics of meteorological elements on the Tibetan Plaetau, the evaluation of remote sensing products and development of the remote sensing retrieval algorithms, and the evaluation and development of numerical models.

    View Details
  • The GAME/Tibet project conducted a short-term pre-intensive observing period (PIOP) at the Amdo station in the summer of 1997. From May to September 1998, five consecutive IOPs were scheduled, with approximately one month per IOP. More than 80 scientific workers from China, Japan and South Korea went to the Tibetan Plateau in batches and carried out arduous and fruitful work. The observation tests and plans were successfully completed. After the completion of the IOP in September, 1998, five automatic weather stations (AWS), one Portable Atmospheric Mosonet (PAM), one boundary layer tower and integrated radiation observatory (Amdo) and nine soil temperature and moisture observation stations have been continuously observed to date and have obtained extremely valuable information for 8 years and 6 months consecutively (starting from June 1997). The experimental area is located in Nagqu, in northern Tibet, and has an area of 150 km × 200 km (Fig. 1), and observation points are also established in D66, Tuotuohe and the Tanggula Mountain Pass (D105) along the Qinghai-Tibet Highway. The following observation stations (sites) are set up on different underlying surfaces including plateau meadows, plateau lakes, and desert steppe. (1) Two multidisciplinary (atmosphere and soil) observation stations, Amdo and NaquFx, have multicomponent radiation observation systems, gradient observation towers, turbulent flux direct measurement systems, soil temperature and moisture gradient observations, radiosonde, ground soil moisture observation networks and multiangle spectrometer observations used as ground truth values for satellite data, etc. (2) There are six automatic weather stations (D66, Tuotuohe, D105, D110, Nagqu and MS3608), each of which has observations of wind, temperature, humidity, pressure, radiation, surface temperature, soil temperature and moisture, precipitation, etc. (3) PAM stations (Portable Automated Meso - net) located approximately 80 km north and south of Nagqu (MS3478 and MS3637) have major projects similar to the two integrated observation stations (Amdo and NaquFx) above and to the wind, temperature and humidity turbulence observations. (4) There are nine soil temperature and moisture observation sites (D66, Tuotuohe, D110, WADD, NODA, Amdo, MS3478, MS3478 and MS3637), each of which has soil temperature measurements of 6 layers and soil moisture measurement of 9 layers. (5) A 3D Doppler Radar Station is located in the south of Nagqu, and there are seven encrypted precipitation gauges in the adjacent (within approximately 100 km) area. The radiation observation system mainly studies the plateau cloud and precipitation system and serves as a ground true value station for the TRMM satellite. The GAME-Tibet project seeks to gain insight into the land-atmosphere interaction on the Tibetan Plateau and its impact on the Asian monsoon system through enhanced observational experiments and long-term monitoring at different spatial scales. After the end of 2000, the GAME/Tibet project joined the “Coordinated Enhanced Observing Period (CEOP)” jointly organized by two international plans, GEWEX (Global Energy and Water Cycle Experiment) and CL IVAR (Climate Change and Forecast). The Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau of the Global Coordinated Enhanced Observation Program (CEOP) has been started. The data set contains POP data for 1997 and IOP data for 1998. Ⅰ. The POP data of 1997 contain the following. 1. Precipitation Gauge Network (PGN) 2. Radiosonde Observation at Naqu 3. Analysis of Stable Isotope for Water Cycle Studies 4. Doppler radar observation 5. Large-Scale Hydrological Cycle in Tibet (Link to Numaguchi's home page) 6. Portable Automated Mesonet (PAM) [Japanese] 7. Ground Truth Data Collection (GTDC) for Satellite Remote Sensing 8. Tanggula AWS (D105 station in Tibet) 9. Syamboche AWS (GEN/GAME AWS in Nepal) Ⅱ. The IOP data of 1998 contain the following. 1. Anduo (1) PBL Tower, 2) Radiation, 3) Turbulence SMTMS 2. D66 (1) AWS (2) SMTMS (3) GTDC (4) Precipitation 3. Toutouhe (1) AWS (2) SMTMS (3 )GTDC 4. D110 (1) AWS (2) SMTMS (3) GTDC (4) SMTMS 5. MS3608 (1) AWS (2) SMTMS (3) Precipitation 6. D105 (1) Precipitation (2) GTDC 7. MS3478(NPAM) (1) PAM (2) Precipitation 8. MS3637 (1) PAM (2) SMTMS (3) Precipitation 9. NODAA (1) SMTMS (2) Precipitation 10. WADD (1) SMTMS (2) Precipitation (3) Barometricmd 11. AQB (1) Precipitation 12. Dienpa (RS2) (1) Precipitation 13. Zuri (1) Precipitation (2) Barometricmd 14. Juze (1) Precipitation 15. Naqu hydrological station (1) Precipitation 16. MSofNaqu (1) Barometricmd 16. Naquradarsite (1)Radar system (2) Precipitation 17. Syangboche [Nepal] (1) AWS 18. Shiqu-anhe (1) AWS (2) GTDC 19. Seqin-Xiang (1) Barometricmd 20. NODA (1)Barometricmd (2) Precipitation (3) SMTMS 21. NaquHY (1) Barometricmd (2) Precipitation 22. NaquFx(BJ) (1) GTDC(2) PBLmd (3) Precipitation 23. MS3543 (1) Precipitation 24. MNofAmdo (1) Barometricmd 25. Mardi (1) Runoff 26. Gaize (1) AWS (2) GTDC (3) Sonde A CD of the data GAME-Tibet POP/IOP dataset cd (vol. 1) GAME-Tibet POP/IOP dataset cd (vol. 2)

    View Details
  • The data set mainly includes the ice observation frequency (ICO) of north temperate lakes in four periods from 1985 to 2020, as well as the location, area and elevation of the lakes. Among them, the four time periods are 1985-1998 (P1), 1999-2006 (P2), 2007-2014 (P3) and 2015-2020 (P4) respectively, in order to improve the "valid observation" times in the calculation period and improve the accuracy. The ICO of the four periods is calculated by the ratio of "icing" times and "valid observation" times counted by all Landsat images in each period. Other lake information corresponds to the HydroLAKEs data set through the "hylak_id" column in the table. In addition, the data only retains about 30000 lakes with an area of more than 1 square kilometer, which are valid for P1-P4 observation. The data set can reflect the response of Lake icing to climate change in recent decades.

    View Details
  • This data set comprises the plateau soil moisture and soil temperature observational data based on the Tibetan Plateau, and it is used to quantify the uncertainty of model products of coarse-resolution satellites, soil moisture and soil temperature. The observation data of soil temperature and moisture on the Tibetan Plateau (Tibet-Obs) are from in situ reference networks at four regional scales, which are the Nagqu network of cold and semiarid climate, the Maqu network of cold and humid climate, and the Ali network of cold and arid climate,and Pali network. These networks provided representative coverage of different climates and surface hydrometeorological conditions on the Tibetan Plateau. - Temporal resolution: 1hour - Spatial resolution: point measurement - Measurement accuracy: soil moisture, 0.00001; soil temperature, 0.1 °C; data set size: soil moisture and temperature measurements at nominal depths of 5, 10, 20, 40 - Unit: soil moisture, cm ^ 3 cm ^ -3; soil temperature, °C

    View Details
  • Relationship between modern pollen and climate, and its representative to vegetation are the important references in explaining and reconstructing past climate and vegetation qualitatively or quantitatively. To extrct past climate and vegetation signals from fossil pollen spectrum of a lacustrine sediment, a corresponding modern pollen dataset collected from lake-sediment surface is necessary. At present, there are a few modern pollen datasets extracted from lake sediment-surface established on the Tibetan Plateau, however, the geographic gaps (e.g. the central and east Tibetan Plateau) of available sampled lakes influence the correct understanding. To ensure the even distribution of the representative lakes, we collected lake sediment-surface samples (n=117) covering the alpine meadow evenly on the east and central Tibetan Plateau, in July and August 2018. For pollen extraction, approximately 10 g (wet original sediment) per sample were sub-sampled. Pollen sample was processed by the standard acid-alkali-acid procedures followed by 7-μm-mesh sieving. More than 500 terrestrial pollen grains were counted for each sample. Pollen assemblages of the dataset from alpine meadow are dominated by Cyperaceae (mean is 68.4%, maximum is 95.9%), with other herbaceous pollen taxa as commen taxa including Poaceae (mean is 10.3%, maximum is 87.7%), Ranunculaceae (mean is 4.8%, maximum is 33.6%), Artemisia (mean is 3.7%, maximum is 24.5%), Asteraceae (mean is 2.1%, maximum is 33.6%), etc. Salix (mean is 0.4%, maximum is 5.3%) is the major shrub taxon in these pollen assemblages, while arboreal taxa occur with low percentages generally (mean of total arboreal percentages is 0.9% (maximum is 5.8%), including mainly Pinus (mean is 0.3%, maximum is 1.8%), Betula (mean is 0.1%, maximum is 0.9%) and Alnus (mean is 0.1%, maximum is 0.7%). These pollen assemblages represent the plant components well in the alpine meadow communities, although they are influenced slightly by long-distance pollen grain transported by wind or river (such as these arboreal pollen taxa). Together with pollen counts and percentages, we also provided the modern climatic data for the sampled lakes. The China Meteorological Forcing Dataset (CMFD; gridded near-surface meteorological dataset) with a temporal resolution of three hours and a spatial resolution of 0.1° was employed, and the climatic data of the nearest pixel of one sampled lake was defined to represent climatic conditions of the lake. Finally, the mean annual precipitation (Pann), mean annual temperature (Tann) and mean temperature of the coldest month (Mtco) and warmest month (Mtwa) are calculated for each sampled lake.

    View Details
  • The past frozen soil map of the Tibetan Plateau was based on a small number of temperature station observations and used a classification system based on continuity. This data set used the geographically weighted regression model (GWR) to synthesize MODIS surface temperature, leaf area index, snow cover ratio and multimodel soil moisture forecast products of the National Meteorological Information Center through spatiotemporal reconstruction. In addition, precipitation observations of more than 40 meteorological stations, the precipitation products of FY2 satellite observations and the multiyear average temperature observation data of 152 meteorological stations from 2000 to 2010 were integrated to simulate the average temperature data of the Tibetan Plateau, and the permafrost thermal condition classification system was used to classify permafrost into several types: Very cold, Cold, Cool, Warm, Very warm, and Likely thawing. The map shows that, after deducting lakes and glaciers, the total area of permafrost on the Tibetan Plateau is approximately 1,071,900 square kilometers. Verification shows that this map has higher accuracy. It can provide support for future planning and design of frozen soil projects and environmental management.

    View Details