NSIDC Antarctic sea ice dataset (1978-2017)

The data sets include four sets of data obtained from the Scanning Multi-channel Microwave Radiometer (SMMR), Special Sensor Microwave Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS) sensors using passive microwave remote sensing inversion. SMMR was aboard the Nimbus-7 satellite, and its working period was from October 26, 1978 to July 8, 1987. Since July 1987, the data provided by the SSM/I and the SSMIS aboard the US Defense Meteorological Satellite Program (DMSP) satellite group have been used. The first three data sets contain sea ice concentration data, covering the Antarctic region with a spatial resolution of 25 km: (1) The data were obtained from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Version 1 by applying the NASA Team algorithm inversion. The temporal coverage is from November 1978 to February 2017, with a temporal resolution of one month. A bin file is stored every month. (2) The data source is the same as the first set. The temporal coverage is from 1978-10-26 to 2017-2-28. The temporal resolution is two days, and the spatial resolution is 25 km. A folder was stored every year, and a bin file was stored every other day. (3) The data were obtained from near-real-time DMSP SSMIS by applying the NASA Team algorithm inversion. The temporal coverage is from 2015-1-1 to 2018-2-3, and the temporal resolution is one day. A bin file is stored every day. Each file consists of a 300-byte file title (data time information, projection pattern, file name) and a 316*332 matrix. The fourth set of data is the sea ice coverage and sea ice area time series. The temporal coverage is from November 1978 to December 2017. This data set is a time series sequence of sea ice coverage and sea ice area in the Antarctic. The temporal resolution is one month, and an ASCII file is stored every month. Each file consists of a file title (time, data type), a 39*1 sea ice cover matrix and a 39*1 sea ice area matrix. For further details on the data, please visit the US Ice and Snow Data Center NSIDC website - Data Description http://nsidc.org/data/NSIDC-0051; http://nsidc.org/data/NSIDC-0081; http://nsidc.org/data/G02135

Simulated data of permafrost range, frozen soil active layer thickness and carbon flux in the Qinghai Tibet Plateau and circumarctic region

Based on the CMIP6 model data (see Table 1 for the model list), the distribution and thickness of frozen soil in the Qinghai Tibet Plateau and the circum Arctic region, as well as the terrestrial ecosystem carbon flux (total primary productivity GPP and ecosystem carbon source sink NEP) data in the frozen soil area under different climate change scenarios (including SSP126, SSP245 and SSP585) in the historical period (1990-2014) and the future (2046-2065) are estimated, with a spatial resolution of 1 ° × 1°。 Among them, the distribution of frozen soil is estimated under the future climate warming scenario by using the spatial constraint method (Chadburn et al., 2017), based on the probability of frozen soil occurrence under different temperature gradients at the current stage, and combined with the future temperature change simulated by the Earth system model. For the change of active layer thickness, the sensitivity of active layer thickness to temperature change estimated by remote sensing at this stage is used to constrain the change of active layer thickness simulated by the Earth System Model, so as to correct the error of the model in simulating the thickness of frozen soil active layer. The future permafrost carbon flux is the multi model ensemble average of the Earth system model simulation results. The simulation results show that the permafrost in the Qinghai Tibet Plateau will be significantly degraded under the future climate change scenario. With the future temperature rise, the continuous permafrost regions will be shown as carbon sources, but the temperature rise will promote the growth of vegetation, and the carbon sink capacity in the discontinuous permafrost regions will be enhanced. Similar to the Qinghai Tibet Plateau, the permafrost around the Arctic will also be generally degraded in the future, and the future climate warming will promote the growth of vegetation in the Arctic, thus enhancing regional carbon sinks.