Current Browsing: Vegetation


HiWATER: Dataset of ground truth measurements synchronizing with airborne PLMR mission in the upper reaches of the Heihe River Basin on August 1, 2012

The dataset of ground truth measurements synchronizing with airborne Polarimetric L-band Multibeam Radiometer (PLMR) mission was obtained in upper reaches of the Heihe River Basin on 1 August, 2012. PLMR is a dual-polarization (H/V) airborne microwave radiometer with a frequency of 1.413 GHz, which can provide multi-angular observations with 6 beams at ±7º, ±21.5º and ±38.5º. The PLMR spatial resolution (beam spot size) is approximately 0.3 times the altitude, and the swath width is about twice the altitude. The measurements were conducted along two transects respectively located at the west and east branches of the Babaohe River and two sampling plots in the A’rou foci experimental area. Along the transects, soil moisture was sampled at every 50 m in the west-east direction. In order to keep the ground measurements following the airborne mission as synchronous as possible in temporal, measurements were made discontinuously. In the A’rou foci experimental area, two sampling plots were identified with areas of 1.5 km × 0.6 km and 0.85 km × 0.6 km. In each plot, soil moisture was sampled at every 50 m in the west-east direction and 100 m in the north-south direction. Steven Hydro probes were used to collect soil moisture and other measurements. Concurrently with soil moisture sampling, vegetation properties were measured at some typical sampling plots. Observation items included: Soil parameters: volumetric soil moisture (inherently converted from measured soil dielectric constant), soil temperature, soil dielectric constant, soil electric conductivity. Vegetation parameters: biomass, vegetation water content, canopy height. Data and data format: This dataset includes two parts of measurements, i.e. soil and vegetation parameters. The former is as shapefile, with measured items stored in its attribute table. The measured vegetation parameters are recorded in an Excel file.

2019-09-14

Qilian Mountain comprehensive observation network: Plant diversity monitoring in Qilian Mountain (plant survey data - 2018)

The dataset consists of three parts: part 1, survey data of plant plots from 7 tributaries of the upper Shiyan River Basin and the Qingtu Lake in the Qilian Mountains from August 16,2018 to August 30 ,2018; part 2, survey data of plant plots in the main tributaries of Heihe River and Shule River Basins from 2018.9.25 to 2018.10.3 ; part 3, survey data of plant plots in Qinghai Lake and Heihe River Basin from August 18, 2013 to August 8, 2018. The first part involves the growth characteristics and quantity information of herbs, shrubs and trees; the second part mainly investigates trees and only gives a rough estimate of herbs; the third part mainly investigates meadow vegetation. The three-part survey sets up plots based on vegetation types, and at least 3 plots (sub-trees, shrubs, and herbs) are selected for each plot. Among them, the herbaceous aspect product is 1m×1m or 0.5m×0.5m; the desert shrub-like product is 10m×10m; the forest shrub area is 2m×2m; the shrub shrub area is 4m×4m; the arbor-like aspect product is 20m. ×20m. Plant community survey in each sample: the arbor sample survey mainly investigated the number of species, species abundance, 20 arbor trees per wooden ruler (including plant height, DBH, crown width, live branch height), within the sample The diameter of all arbor; the shrub-like method mainly investigated the species number, abundance, shrub crown and shrub plant height of all shrubs; the herb sample mainly investigated the number, degree or coverage of the herbaceous species, average plant height, total coverage, Aboveground biomass.

2019-09-14

HiWATER: Dataset of leaf area index by LAI2200 in the lower reaches of the Heihe River Basin

LAI observation was carried out for the typical underlying surface in the lower reaches of Heihe River Basin during the aviation flight experiment in 2014. The observation started on 24 July, 2014 and finished on 1 August, 2014. 1. Observation time On days of 24 July, 27 July, 30 July, 31 July and 1 August, 2014 2. Samples and observation methods Large areas with homogeneous vegetation (greater than 100 m * 100 m) were chosen as the observation samples. And forty field samples were selected according to the characteristics of vegetation distribution in the downstream. The land-use types including the cantaloupe, the Tamarix chinensis, the reeds, the weeds, the Karelinia caspica, the Sophora alopecuroides and so on. LAI data were calculated according to the transmittance derived from an A value (above-canopy readings) and four B values (below readings). More than two LAI values were obtained for each sample. At the same time, the heights of the vegetation in each sample were measured. 3. Observation instrument LAI 2200 4. Data storage The observation recorded data were stored in excel and the original LAI data were stored in txt files.

2019-09-13

HiWATER: Dataset of vegetation LAI measured by LAI2000 in the middle reaches of the Heihe River Basin

This dataset is the LAI observation in the artificial oasis experimental region of the middle stream of the Heihe River Basin. The observation period is from 24 May to 20 September 2012 (UTC+8). Measurement instruments: LAI-2000 (Beijing Normal University) Measurement positions: Core Experimental Area of Flux Observation Matrix 18 corn samples, 1 orchard sample, 1 artificial white poplar sample Measurement methods: To measure the incoming sky radiation on the canopy firstly. Then the transmission sky radiation are mearued under the canopy for serveral times. The canopy LAI is retrieved by using the gap probability model.

2019-09-13

HiWATER: The multi-scale observation experiment on evapotranspiration over heterogeneous land surfaces (MUSOEXE-12)-Flux Observation Matrix (stable isotopic observation) (2012)

This dataset includes 5 sub-datasets obtained from measurements in the flux observing matrix at observing site No.15 (the Daman superstation) and 13. Specifically, the sub-datasets include the following: (1) a dataset that contains atmospheric water vapor D/H and 18O/16O isotopic and flux ratio measurements from site No.15 from 27 May to 21 September in 2012, (2) a dataset that contains D/H and 18O/16O isotopic ratios of water in soil and in corn xylem at site No.15 from 27 May to 21 September 2012, (3) a dataset that contains atmospheric water vapor D/H and 18O/16O isotopic ratios at site No.13 when airborne surveys occurred, and (4) a dataset that contains D/H and 18O/16O isotopic ratios of water in soil and in corn xylem at sites No.13 and 15 when airborne surveys occurred, (5) a dataset that contains the ratios of evaporation and transpiration to evapotranpiration at site No.15. The experiment area was located in a corn cropland in the Daman irrigation district of Zhangye, Gansu Province, China. The positions of observing sites No.15 and 13 were 100.3722° E, 38.8555° N and 100.3785° E, 38.8607° N, respectively, with an elevation of 1552.75 m above sea level. The atmospheric water vapor D/H and 18O/16O isotopic and flux ratios at site No.15 were continuously measured using an in situ observation system. The system consisted of an H218O, HDO and H2O analyzer (Model L1102-i, Picarro Inc.), a CTC HTC-Pal liquid auto sampler (LEAP Technologies) and a multichannel solenoid valve (Model EMT2SD8 MWE, Valco Instruments CO. Inc.). The heights of the two intakes were 0.5 and 1.5 m above the corn canopy. The water vapor D/H and 18O/16O isotopic ratio analyzer recorded signals at 0.2 Hz; data were recorded for 2 minutes per intake. The data were block-averaged to hourly intervals. The sampling frequency of soil and xylem at site No. 15 was 1-3 days. The atmospheric water vapor D/H and 18O/16O isotopic and flux ratios at site No.13 were measured using a cold traps/mass spectrometer. The sampling frequency of atmospheric water vapor, soil water and xylem water at site No.13 was the same as that of the airborne surveys. Briefly, the Picarro analyzer measurements were calibrated during every 3 h switching cycle using a two-point concentration interpolation procedure in which the water vapor mixing ratio was dynamically controlled to track the ambient water vapor mixing ratio. Possible delta stretching effects were not considered. A schematic diagram of the Picarro analyzer and its operation principles and calibration procedure are described elsewhere in the literature (Huang et al., 2014; Wen et al. 2008, 2012). The dataset of atmospheric water vapor D/H and 18O/16O isotopic and flux ratios at site No.15 includes the following variables: Timestamp (time, timestamp without time zone), Number (available record number), δD for r1 (δD for the lower intake, ‰), δD for r2 (δD for the higher intake, ‰), δ18O for r1 (δ18O for the lower intake, ‰), δ18O for r2 (δ18O for the higher intake, ‰), vapor mixing ratio for r1 (vapor mixing ratio for the lower intake, mmol/mol), vapor mixing ratio for r2 (vapor mixing ratio for the higher intake, mmol/mol), δET_D (δD of evapotranspiration, ‰), and δET_18O (δ18O of evapotranspiration, ‰). The dataset of D/H and 18O/16O isotopic ratios of water in soil and in corn xylem at site No.15 includes the following variables: Timestamp (time, timestamp without time zone), Remark (treatment: soil without mulch (Ld)=1; soil with mulch (Fm)=2; soil with male corns (F)=3; Xylem=4), δD (‰), and δ18O (‰). The dataset for the ratio of soil evaporation and transpiration to the evapotranspiration at site 15 includes the following variables: Timestamp (time, timestamp without time zone), E/ET (ratio of soil evaporation to the evapotranspiration, %), and T/ET (ratio of transpiration to the evapotranspiration, %). The mean (±one standard deviation) ratio of transpiration to evapotranspiration was 86.7±5.2% (the range was 71.3 to 96.0%). The mean (±one standard deviation) ratio of soil evaporation to the evapotranspiration was 13.3 ±5.2% (the range was 4.0 to 28.7%). The dataset of atmospheric water vapor D/H and 18O/16O isotopic ratio at site No. 13 when airborne surveys occurred includes the following variables: Timestamp1 (start time, timestamp without time zone), Timetamp2 (end time, timestamp without time zone), Height (observation height, cm), δD (‰), and δ18O (‰). The dataset of D/H and 18O/16O isotopic ratios of water in soil and in corn xylem at sites No. 13 and 15 when airborne surveys occurred include the following variables, Timestamp (time, timestamp without time zone), Remark (treatment: soil without mulch (Ld)=1; soil with mulch (Fm)=2; Xylem=4), δD (‰), δ18O (‰), and Location (observing site 13 or 15) . The missing measurements were replaced with -6999. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Wen et al. (2016) (for data processing) in the Citation section.

2019-09-12

HiWATER: Observation dataset of fractional vegetation cover by digital camera in the downstream of the Heihe River Basin (2014)

The fractional vegetation cover observation was carried out for the typical underlying surface in the lower reaches of the Heihe River Basin during the aviation flight experiment in 2014. The observation started on 24 July, 2014 and finished on 1 August, 2014. 1. Observation time On days of 24 July, 27 July, 30 July, 31 July and 1 August, 2014 2. Samples method Large areas with homogeneous vegetation (greater than 100 m * 100 m) were chosen as the observation samples. And forty field samples were selected according to the characteristics of vegetation distribution in the low reaches. The land-use types including the cantaloupe, the Tamarix chinensis, the reeds, the weeds, the Karelinia caspica, the Sophora alopecuroides and so on. 3. Observation methods 3.1 Instruments and measurement method Digital photography measurement is implemented to measure the FVC. Plot positions, photographic method and data processing method are dedicatedly designed. In field measurements, a long stick with the camera mounted on one end is beneficial to conveniently measure various species of vegetation, enabling a larger area to be photographed with a smaller field of view. The stick can be used to change the camera height; a fixed-focus camera can be placed at the end of the instrument platform at the front end of the support bar, and the camera can be operated by remote control. 3.2 Photographic method The photographic method used depends on the species of vegetation and planting pattern. A long stick with the camera mounted on one end is used for the Tamarix chinensisi and reeds. For the Tamarix chinensisi and reeds, rows of more than two cycles should be included in the field of view (<30), and the side length of the image should be parallel to the row. If there are no more than two complete cycles, then information regarding row spacing and plant spacing are required. The FVC of the entire cycle, that is, the FVC of the quadrat, can be obtained from the number of rows included in the field of view. For other vegetation , the photos of FVC were obtained by directly photographing for the lower heights of the vegetation. 3.3 Method for calculating the FVC The detail method of the FVC calculation can be found in the reference below. Many methods are available to extract the FVC from digital images, and the degree of automation and the precision of identification are important factors that affect the efficiency of field measurements. This method, which is proposed by the authors, has the advantages of a simple algorithm, a high degree of automation and high precision, as well as ease of operation (see the reference). 4 Data storage The observation recorded data were stored in excel and the original FVC data were stored in photos.

2019-09-12

HiWATER: Dataset of photosynthesis observed by LI-6400 in the middle reaches of the Heihe River Basin

The dataset of photosynthesis was observed by LI-6400XT Portable Photosynthesis System in the artificial oasis eco-hydrology experimental area of the Heihe River Basin. Observation items included two main crops in the middle reaches of Heihe river: wheat and maize, which located in the town of Pingchuan in Linze and the Super Station of Wuxing, respectively. Observation periods lasted from mid-May to September. This dataset included the raw observation data and the pretreatment data of wheat and maize observed by LI-6400 during the observation periods. Objectives of observation: The photosynthetic datasets can be used in the study of plant physiological ecology characteristic and the simulation and validation for the eco-hydrological models. Instrument and theory of the observation: (1) Measuring instrument: LI-6400XT Portable Photosynthesis System; (2) Measuring theory: Using the infrared gas analyzer to measure the change of CO2 concentration, and then measuring the differences of CO2 concentration between the sample chamber and the referenced chamber so as to acquire the net productivity of the leaf. Time and site of observation: (1) Observation site of the wheat: in the town of Pingchuan in Linze; Observation time: 2012-05-17,2012-06-08 to 2012-6-13; (2) Observation site of the maize: in the Super Station of Wuxing; Observation time: from 2012-05-19 to 2012-08-15. The time used in this dataset is in UTC+8 Time. Data processing: The raw data of LI-6400 were archived in text format and can be opened by text editor or excel, the preprocessed data were in Excel format. Every time period of observation was archived in a single document, named as “date + type + time”, every leaf was recorded 3 times, and then added a remark.

2019-09-12

WATER: Dataset of evaportranspiration measured by micro-lysimeter at the super site around the Dayekou Guantan forest station

The dataset of evaportranspiration measured by micro-lysimeter was obtained at the super site (100m×100m, pure Qinghai spruce) around the Dayekou Guantan forest station. Observation items included the ground-based lidar scanning, the total station measuring, DGPS, tally investigation, LAI, canopy spectrum, camera observations of the canopy, soil evapotranspiration, the soil frozen tube observations, surface roughness, precipitation interception, soil moisture and dry-wet weight of the forest component. Observation time was 18:00 every day from Jun. 1 to Dec. 31, 2008. 20 rain gauges, 4 self-made Lysimeter (diameter: 20cm) and the electronic balance were used. Those provide reliable data for retrieval of evapotranspiration from remote sensing data.

2019-05-23

WATER: Dataset of ground truth measurement synchronizing with the airborne microwave radiometers (L&K bands) mission in the Biandukou foci experimental area on Jul. 4, 2008

The dataset of ground truth measurement synchronizing with the airborne microwave radiometers (L&K bands) mission was obtained in the Biandukou foci experimental area on Jul. 4, 2008. Observation items included: (1) the soil temperature by the handheld infrared thermometer from L1 to L8 (1km from one another) in Biandukou and soil moisture by ML2X; nine samples were collected every 200 m along each line (1.6km). (2) 5 quadrates (50cm×50cm) investigations including GPS, the vegetation cover types and the height, the actual numbering, the valve bag numbering, wet weight+the refuse bag (g), dry weight+the envelope (g), the envelope (g) and the photo numbering. The data were archived as Excel files.

2019-05-23

WATER: Dataset of forest canopy gap fraction above the rain gauges observed by the camera at the super site around the Dayekou Guantan forest station

The dataset of forest canopy gap fraction above the rain gauges observed by the camera (PENTAX K100D, 2400×1600) was obtained at the super site (100m×100m, Qinghai spruce) around the Dayekou Guantan forest station from 9:00-10:40 on Jun. 4, 2008. Observation items included the ground-based LiDAR scanning, the total station measuring, DGPS, tally investigation, LAI, canopy spectrum, camera observations of the canopy, soil evapotranspiration, the soil frozen tube observations, surface roughness, precipitation interception, soil moisture and dry-wet weight of the forest component. A subplot (25m×25m) was chosen for precipitation interception observations with different canopy density, and 32 sets of photos were taken 1m above the ground. Through studying those photos, the number and location of rain gauges could be determined; and then the canopy density could also be further developed.

2019-05-23