Current Browsing: Vegetation


Qilian Mountains integrated observatory network: Dataset of the Heihe River Basin integrated observatory network (phenology camera observation dataset of Daman superstation, 2018)

The dataset contains phenological camera observation data collected at the Arou Superstation in the midstream of the Heihe integrated observatory network from June 13 to November 16, 2018. The instrument was developed with data processed by Beijing Normal University. The phenomenon camera integrates data acquisition and data transmission functions. The camera captures high-quality data with a resolution of 1280×720 by looking-downward. The calculation of the greenness index and phenology are following 3 steps: (1) calculate the relative greenness index (GCC, Green Chromatic Coordinate, calculated by GCC=G/(R+G+B)) according to the region of interest, (2) perform gap-filling for the invalid values, filtering and smoothing, and (3) determine the key phenological parameters according to the growth curve fitting (such as the growth season start date, Peak, growth season end, etc.) There are also 3 steps for coverage data processing: (1) select images with less intense illumination, (2) divide the image into vegetation and soil, and (3) calculate the proportion of vegetation pixels in each image in the calculation area. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user, and the filtered result is the final time series coverage. This data set includes relative greenness index (GCC), phenological phase and fractional cover (FC). Please refer to Liu et al. (2018) for sites information in the Citation section.

2020-07-25

Qilian mountains integrated observatory network: Dataset of Heihe integrated observatory network (Phenology camera observation dataset of Arou superstation, 2018)

The dataset contains phenological camera observation data collected at the Arou Superstation in the midstream of the Heihe integrated observatory network from June 13 to November 16, 2018. The instrument was developed with data processed by Beijing Normal University. The phenomenon camera integrates data acquisition and data transmission functions. The camera captures high-quality data with a resolution of 1280×720 by looking-downward. The calculation of the greenness index and phenology are following 3 steps: (1) calculate the relative greenness index (GCC, Green Chromatic Coordinate, calculated by GCC=G/(R+G+B)) according to the region of interest, (2) perform gap-filling for the invalid values, filtering and smoothing, and (3) determine the key phenological parameters according to the growth curve fitting (such as the growth season start date, Peak, growth season end, etc.) There are also 3 steps for coverage data processing: (1) select images with less intense illumination, (2) divide the image into vegetation and soil, and (3) calculate the proportion of vegetation pixels in each image in the calculation area. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user, and the filtered result is the final time series coverage. This data set includes relative greenness index (Gcc). Please refer to Liu et al. (2018) for sites information in the Citation section.

2020-07-25

Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (phenology camera observation data set of mixed forest superstation, 2018)

The dataset contains phenological camera observation data collected at the Arou Superstation in the midstream of the Heihe integrated observatory network from June 13 to November 16, 2018. The instrument was developed with data processed by Beijing Normal University. The phenomenon camera integrates data acquisition and data transmission functions. The camera captures high-quality data with a resolution of 1280×720 by looking-downward. The calculation of the greenness index and phenology are following 3 steps: (1) calculate the relative greenness index (GCC, Green Chromatic Coordinate, calculated by GCC=G/(R+G+B)) according to the region of interest, (2) perform gap-filling for the invalid values, filtering and smoothing, and (3) determine the key phenological parameters according to the growth curve fitting (such as the growth season start date, Peak, growth season end, etc.) There are also 3 steps for coverage data processing: (1) select images with less intense illumination, (2) divide the image into vegetation and soil, and (3) calculate the proportion of vegetation pixels in each image in the calculation area. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user, and the filtered result is the final time series coverage. This data set includes relative greenness index (Gcc). Please refer to Liu et al. (2018) for sites information in the Citation section.

2020-07-25

The vegetation map at the 1:4,000,000 of China (1979)

This dataset: Editor-in-Chief: Hou Xueyu Drawing: Hou Xueyu, Sun Shizhou, Zhang Jingwei, He Miaoguang. Wang Yifeng, Kong Dezhen, Wang Shaoqing Publishing: Map Press Issue: Xinhua Bookstore Year: 1979 Scale: 1: 4,000,000 It took five years to complete from May 1972 to July 1976. In the process of drawing legends and mapping, referring to the vast majority of vegetation survey data (including maps and texts) after 1949 in China, we held more than a dozen mapping seminars involving researchers from inside and outside the institute. During the layout after the mapping work was completed, many new survey data were added, especially vegetation data in western Tibet. The nature of this map basically belongs to the current vegetation map, including two parts of natural vegetation and agricultural vegetation. The legend of natural vegetation is arranged according to the seven vegetation groups. They are mainly divided according to the appearance of plant communities and certain ecological characteristics. The concept of agricultural vegetation community, like the natural vegetation community, also has a certain life form (appearance, structure, layer), species composition and a certain ecological location. In 1990, the State Key Laboratory of Resources and Environmental Information Systems of the Institute of Geographical Sciences and Resources, Chinese Academy of Sciences completed the digitization of this map, and wrote relevant data description documents. The digitized data also adopt equal product cone projection and can be converted into other projections by GIS software. This data includes a vector file in e00 format, a Chinese vegetation coding design description, a dataset description, a vegetation data layer attribute data table, and a scanned "People's Republic of China Vegetation Map-Brief Description" and other files. Data projection: Projection: Albers false_easting: 0.000000 false_northing: 0.000000 central_meridian: 110.000000 standard_parallel_1: 25.000000 standard_parallel_2: 47.000000 latitude_of_origin: 0.000000 Linear Unit: Meter (1.000000) Geographic Coordinate System: Unknown Angular Unit: Degree (0.017453292519943299) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Unknown Spheroid: Clarke_1866 Semimajor Axis: 6378206.400000000400000000 Semiminor Axis: 6356583.799999999800000000 Inverse Flattening: 294.978698213901000000

2020-06-09

Vegetation map (1:1,000,000) in the Heihe River basin (2001)

The data is the digitization of the Heihe River basin part of the 1:1 million Vegetation Atlas of China, 1:1000, 000 Vegetation Atlas of China is edited by academician Hou Xueyu, a famous vegetation ecologist (Hou Xueyu, 2001). It is jointly compiled by more than 250 experts from 53 units such as research institutes of Chinese Academy of Sciences, relevant ministries and commissions, relevant departments of various provinces and regions, colleges and universities. It is another summative achievement of vegetation ecologists in China over 40 years after the publication of monographs such as vegetation of China Basic map of natural resources and natural conditions of the family. It is based on the rich first-hand information accumulated by vegetation surveys carried out throughout the country over the past half century, and the materials obtained by modern technologies such as aerial remote sensing and satellite images, as well as the latest research achievements in geology, soil science and climatology. It reflects in detail the distribution of vegetation units of 11 vegetation type groups, 796 formations and sub formations of 54 vegetation types, horizontal and vertical zonal distribution laws, and also reflects the actual distribution of more than 2000 dominant species of plants, major crops and cash crops in China, as well as the close relationship between dominant species and soil and ground geology. The atlas is a kind of realistic vegetation map, reflecting the recent quality of vegetation in China.

2020-06-05

The investigation data on the ground and underground biomass and distribution characteristics of the desert plant communities (2014)

In the previous project, three different types of desert investigation and observation sites in the lower reaches of Heihe River were set up. Different kinds of desert plants with the same average growth and size as the observation site were selected for the above ground biomass and underground biomass total root survey. The dry weight was the dry weight at 80 ℃, and the root shoot ratio was the dry weight ratio of the underground biomass to the aboveground biomass. Species: Elaeagnus angustifolia, red sand, black fruit wolfberry, bubble thorn, bitter beans, Peganum, Tamarix and so on.

2020-06-01

Data of grassland community diversity and main plant functional trait under the influence of herdsmen's livestock raising activities (2012)

1) Initial data of community characteristics and main plant biological characteristics of the grass-animal equilibrium stage of the test grassland in 1983; 2) Livestock management data of 4-5 grazing grasslands; 3) Observation data of diversity, productivity and functional group of different grazing grassland communities; 4) Observation data on the height, coverage, biomass, and flower morphology, tillering, and leaf characteristics of main plants in different grazing gradient grasslands 5) Observation data of soil nutrients and litter in different grazing grasslands.

2020-04-12

HiWATER:Dataset of Hydrometeorological observation network (Thermal Dissipation sap flow velocity Probe-2014)

The data set contains the observation data of thermal diffusion fluid flow meters at the downstream mixed forest station and eupoplar forest station of the hydrometeorological observation network from January 1 to December 31, 2014. La shan au in the study area is located in the Inner Mongolia autonomous region of mesozoic-cenozoic in iminqak, according to the different height and diameter at breast height of iminqak, choose sampling tree installation TDP (Thermal Dissipation SAP flow velocity Probe, Thermal diffusion flow meter), domestic TDP pin type Thermal diffusion stem flow meter, the model for TDP30.The sample sites are TDP1 point and TDP2 point respectively, which are located near the mixed forest station and populus populus station.The height of the sample tree is TDP2 and TDP1 from high to low, and the diameter of the chest is TDP1 and TDP2 from large to small, so as to measure the trunk fluid flow on behalf of the whole area.The installation height of the probe is 1.3 meters and the installation orientation is due east and west of the sample tree. The original observation data of TDP is the temperature difference between probes, which is collected once for 10s and the average output period is 10 minutes.The published data are calculated and processed trunk flow data, including flow rate (cm/h), flux (cm3/h) and daily transpiration (mm/d) per 10 minutes.Firstly, the liquid flow rate and liquid flux were calculated according to the temperature difference between the probes, and then the transpiration Q per unit area of the forest zone was calculated according to the area of Euphrates poplar forest and the distance between trees at the observation points.At the same time, post-processing was carried out on the calculated rate and flux value :(1) data that obviously exceeded the physical significance or the instrument range were removed;(2) the missing data is marked with -6999;Among them, the data of TDP2 was missing due to power supply problems from 1.1-2.8 days, and the data of the third group of probes was missing from 2.8-3.13 days due to the problems of the third group of probes.(3) suspicious data caused by probe fault or other reasons shall be identified in red, and the data confirmed to have problems shall be removed. Please refer to Li et al.(2013) for hydrometeorological network or site information, and Qiao et al.(2015) for observation data processing.

2020-04-06

The annual ecological investigation data of desert vegetation with different desert types in the Heihe River Basin (2012)

The year-end ecological investigation was conducted in the late September and early October when plants stopped growing. There are 8 investigation and observation fields, they are: piedmont desert, piedmont Gobi, desert in the middle, Gobi in the middle reaches, desert in the middle reaches, downstream desert, downstream Gobi, and downstream desert, the size of each filed is 40m×40m. Three large quadrats of 20m×20m were selected in each observation field, named S1, S2, and S3, to conduce the regular shrub investigation; four small quadrats were selected from each large quadrat with a size of 5m×5m, named A, B, C, D, to conduct herbal investigation.

2020-03-31

Ecological attribute data set of oasis vegetation in the middle and lower reaches of Heihe River (2015-2017)

This data set contains observation data of vegetation ecological properties in the middle and lower reaches of heihe river from January 1, 2015 to July 31, 2017. It contains 355 data, among which 208 are populus eupoplar and 147 are tamarisk.Ecological attributes include 4 groups of ecological parameters and a total of 15 categories of 74 indicators, as follows: Vegetation structure parameters (25 indicators in 5 categories) : Coverage: total coverage, three-layer coverage, average diameter of canopy; Height: three-layer height, canopy thickness, litter thickness, moss thickness, maximum root depth; Density: layer density and average diameter of trees; Leaf area index: maximum leaf area index and minimum leaf area index of three layers of trees and grass; Phenological stage: leaf spreading stage, leaf filling stage, leaf deciduous stage, complete deciduous stage. Vegetation productivity parameters (16 indicators in 3 categories) : Aboveground biomass: total biomass, three-layer stem biomass, leaf biomass; Root biomass: root biomass, 0-5, 5-15, 15-30, 30-50, 50-100, 100-250cm fine root biomass; Other biomass: litter layer, moss layer biomass and carbon storage. Physiological and ecological parameters (24 indicators in 4 categories) : Biomass distribution: proportion of rhizome and leaf distribution; Element content: carbon content of roots and leaves, carbon - nitrogen ratio, carbon content of litters, carbon content of moss; Blade shape: specific leaf area, blade length and width, leaf inclination; Characteristics of gas exchange: leaf water potential, net photosynthetic rate, stomatal conductance, transpiration rate, air temperature, intercellular CO2 concentration, photosynthetic effective radiation, etc. Hydrological parameters of vegetation (3 categories and 9 indicators) : Redistribution of rainfall: maximum interception, canopy interception, rain penetration, trunk flow Yield flow: yield flow, yield coefficient; Evaporation: plant transpiration, soil evaporation, soil evaporation depth.

2020-03-31