Current Browsing: plants


Hulugou basin base camp integrated environmental observation system data set (2012)

1. Data overview The data set of the base camp integrated environmental observation system is a set of ENVIS (IMKO, Germany) which was installed at the base camp observation point by qilian station.It is stored automatically by ENVIS data mining system. 2. Data content This data set is the scale data from January 1, 2012 to December 31, 2012.Including air temperature 1.5m, humidity 1.5m, air temperature 2.5m, humidity 2.5m, soil moisture 0cm, precipitation, wind speed 1.5m, wind speed 2.5m, wind direction 1.5m, geothermal flux 5cm, total radiation, surface temperature, ground temperature 20cm, ground temperature 40cm, ground temperature 60cm, ground temperature 80cm, ground temperature 120cm, ground temperature 160cm, CO2, air pressure. 3. Space and time scope Geographical coordinates: longitude: 99° 53’e;Latitude: 38°16 'N;Height: 2980.2 m

2020-03-10

Physiological index analysis data of typical desert plants in Heihe River basin (July 2011)

In mid-july 2011, photosynthetic organs (leaves or assimilating branches) of typical desert plants were collected and brought back to the laboratory in a liquid nitrogen tank for determination. The analysis indexes mainly include soluble protein unit: mg/g;Free amino acid unit: g/g;Chlorophyll content unit: mg/g;Superoxide dismutase (SOD) unit: U/g FW;Catalase (CAT) unit: U/(g•min);POD unit: U/(g•min);Proline (Pro) unit: g/g; Soluble sugar unit: g/g;Malondialdehyde (MDA) is given in moles per liter.

2020-03-10

Physiological index analysis data of typical desert plants in Heihe River basin (2011-2012)

On the basis of physiological and biochemical analysis of photosynthetic organs (leaves or assimilating branches) of typical desert plants in heihe river basin collected in mid-july 2011, some photosynthetic organs of desert plants were collected in mid-july 2012 and put into a liquid nitrogen tank and brought back to the laboratory for determination. Physiological analysis indexes mainly include: soluble protein unit: mg/g;Free amino acid unit: g/g;Chlorophyll content unit: mg/g;Superoxide dismutase (SOD) unit: U/g FW;Catalase (CAT) unit: U/(g•min);POD unit: U/(g•min);Proline (Pro) unit: g/g; Soluble sugar unit: g/g;Malondialdehyde (MDA) is given in moles per liter.

2020-03-10

Interception data of precipitation for alpine shrubs in Hulu watershed (2012)

In the growing season of 2012, four typical shrub communities observed precipitation stem stream and penetrating rainfall during the experiment period.Data content: test date;Stem flow rate;Penetration rainfall, interception. Method of observation: water penetration was measured using a circular iron vessel with a diameter of 15 cm and a height of 10 cm.Since jinrumei, seabuckthorn and jinjijicinus shrub could not be observed on a single plant, after the canopy canopy density of the sample plots was determined, 9 water receivers were placed in each sample plot, so that there were water receivers under different canopy closures.This method of observing rain penetration allows for better collection of rain penetration from different parts of the underbrush.Due to the difficulty of observation and the lack of herbaceous vegetation, the interception of herbaceous under shrub was neglected.Takashima is centered on the stem, which is near the stem. One is placed at the edge of the crown and one at the middle of the crown and spoke. The Angle between each 3 containers is 120°.Six of each shrub were selected for stem flow observation.A single shrub was measured on the lower stems of all branches, and the stem flow of the trunk of the cluster shrub was measured by standard branch method, that is, the basal diameter of each branch of the selected shrub was measured.Under brush all branch stem, the use of polyethylene plastic hose cut open, card on the thickets stems directly, with a plastic adhesive tape and glass, the plastic tube directly connected to the trunk stem flow collection bottle, bottle thickness and plastic pipe, avoid rain and penetrate the rain into the collection bottle, before use after artificial experiments can precisely collect trunk stem flow.In order to reduce the error caused by evaporation in the measurement process, the penetrating rainfall and the flow of the trunk and stem were measured in time after the rain, such as the rain at night, and the samples were taken early in the morning on the second day. Data processing: the penetration rainfall is multiplied by 1.78 (conversion coefficient of different diameters of 20 cm and 15 cm) and replaced by the corresponding penetration rainfall (mm) at standard 20 cm.The measured water volume of each trunk flow collection bottle was divided by the projection area of the standard branch to obtain the trunk flow rate of the branch. The trunk flow rate of the standard branch was multiplied by the number of branches of the whole shrub to obtain the trunk flow rate of the whole shrub.According to the principle of water balance, the redistribution process of rainfall by shrub can be divided into three parts: interception, trunk flow and penetrating rainfall: IC = P - SF - TF Where, P is the rainfall outside the forest;TF is the penetrating rainfall;SF is the flow rate of the trunk.IC is the interception amount of the irrigation layer.According to the measured data of the stem flow through the rain trunk, the interception was obtained by using the above equation.

2020-03-10

Dataset of vegetation plots in the Ejina delta (2010-2011)

Field survey data of ecological vegetation sample in ejin delta during the project implementation period. A sample of ecological vegetation survey near 31 groundwater salinity observation points in ejin delta.The main investigation items include: plant species, plant structure, number, height, base diameter, crown width, coverage, frequency, etc.Time: 2010 and 2011 (july-august).

2020-03-10

WATER: Dataset of forest structure parameter survey at the fixed sampling plot in the Pailugou watershed and Dayekou watershed foci experiment area (2003)

The main contents of this data set are forest, shrub and grassland sample plot survey data.The fixed samples are located in the drainage ditch valley of qilian mountain and the dayaokou valley where the hydrology observation and test site of the water source conservation forest research institute of gansu province is located. The information of the sample is as follows: Number elevation quadrat size longitude latitude surface type G1 2715 20 × 20 100 ° 17 '12 "38 ° 33' 29" qinghai spruce forest G2 2800 20×36 100°17 '07 "38°33' 27" moss spruce forest G3 2840 20×20 100°17 '37 "38°33' 05" moss spruce forest G4 2952 20 × 20 100 ° 17 '59 "38 ° 32' 47" qinghai spruce forest G5 3015 20 × 20 100 ° 18 '06 "38 ° 32' 42" qinghai spruce forest G6 3100 20 × 20 100 ° 18 '13 "38 ° 32' 31" thicket qinghai spruce forest G7 3300 23.5 × 20 thickets qinghai spruce forest G8 2800 20×20 100°13 '30 "38°33' 29" moss spruce forest B1 2700 12.8×25 moss spruce forest B2 2800 20×20 100°17 '38 "38°32' 59" moss spruce forest B3 2900 20×20 100°17 '59 "38°32' 51" grass spruce forest B4 3028 20×20 100°17 '59 "38°32' 39" moss spruce forest B5 3097 20×20 100°18 '02 "38°32' 32" moss spruce forest B6 3195 20 × 20 100 ° 18 '06 "38 ° 32' 25" qinghai spruce forest B7 2762 20 × 20 100 ° 17 '08 "38 ° 33' 21" qinghai spruce forest B8 2730 20×20 100°17 '06 "38°33' 27" moss spruce forest GM1 3690 5×5 100°18 '02 "38°32' 02" caragana scrub (middle) GM2 3690 5×5 100°18 '02 "38°32' 02" caragana scrub (rare) GM3 3700 5×5 100°18 '03 "38°32' 03" caragana + jilaliu shrub (dense) GM4 3600 5×5 100°18 '10 "38°32' 06" caragana + jila willow thicket (middle) GM5 3600 5×5 100°18 '10 "38°32' 06" caragana + jila willow shrub (sparse) GM6 3600 5×5 100°18 '10 "38°32' 06" caragana + jila willow thicket (dense) GM7 3500 5×5 100°18 '14 "38°32' 08" caragana + jila willow thicket (middle) GM8 3500 5×5 100°18 '14 "38°32' 08" caragana + jila willow thicket (dense) GM9 3500 5×5 100°18 '14 "38°32' 08" caragana + jila willow thicket (rare) GM10 3400 5×5 100°18 '18 "38°32' 12" golden pheasant scrub (rare) GM11 3400 5×5 100°18 '18 "38°32' 12" golden pheasant + golden raspberry shrub (dense) GM12 3400 5×5 100°18 '18 "38°32' 12" golden pheasant scrub (rare) GM13 3300 5 × 5 100 ° 18 '21 "38 ° 32' 21" giraliu thicket GM14 3300 5 × 5 100 ° 18 '21 "38 ° 32' 21" caragana + jila shrub GM15 3300 5 × 5 100 ° 18 '21 "38 ° 32' 21" caragana + jila shrub YC3 2700 1×1 100°17 '14 "38°33' 33" needle thatch field YC4 2750 1×1 100°17 '18 "38°33' 32" needle thatch field YC5 2800 1×1 100°17 '21 "38°33' 33" needle thatch field YC6 2850 1×1 100°17 '25 "38°33' 33" needle thatch field YC7 2900 1×1 100°17 '31 "38°33' 32" aster + needle thatch field YC8 2950 1×1 100°17 '44 "38°33' 23" needle thatch field YC9 2980 1×1 100°17 '48 "38°33' 25" needle thatch field The sample geodesic tree data were surveyed from July to August 2007.The survey included: 1. Basic survey of sample plots in drainage ditch basin: A) sample land setting: sample land number, elevation, slope direction, slope position, slope, soil layer thickness, sample land size, longitude and latitude, community type, soil type, operation status, age B) survey of each wood in the sample plots: sample plot number, tree number, tree species, tree classification, chest diameter, tree height, undershoot height, crown radius 2. Soil profile survey record sheet Including forest/vegetation status, major tree species, forest age, soil name, surface soil erosion, parent rock and material, drainage conditions, land use history, soil profile (soil layer, moisture, color, texture, structure, root system, gravel content) 3. Standard ground cover factor Standard land area, dominant tree species, stand/vegetation origin, elevation, slope direction, slope position, slope, cutting and utilization method, afforestation land preparation type, survey method, canopy coverage, living ground cover, dead cover cover, litter thickness (undivided strata, semi-decomposed layer, decomposed layer) 4. Canopy survey: 5. Draft quadrat (1m×1m) survey record sheet Including species name, number, coverage, average height 6. Results of determination of soil physical properties in source forest of qilian mountain (land sample survey) Contains the soil physical properties measurement process (+ wet mud weight aluminum box, aluminum box, soil moisture content, suddenly bulk density, etc.), bringing biomass measurement (total fresh weight of shrub and herb, fresh weight of sample, sample dry weight, etc.), litter dry weight (including mosses) layer and the largest capacity calculation process (of moss and litter thickness, total fresh weight, fresh weight of samples, the dry weight of the sample, soaking for 24 h after heavy, maximum water holding capacity, the largest water depth, the biggest hold water rate, maximum moisture capacity) 7. Bush sample survey: Including species name, number, coverage, average height 8. Standard sample land setting and questionnaire for each wooden inspection ruler Including tree species, tree classification, age, chest diameter, number of height, undershoot height, crown radius 9. Litter layer survey record sheet Including litter (decomposed layer, semi-decomposed layer, decomposed layer) thickness 10. Update survey records: Including tree species, natural regeneration (height <30cm, height 31-50cm, height >51cm), artificial regeneration (height <30cm, height 31-50cm, height >51cm) This data set can provide ground measured data for remote sensing inversion of forest structure parameters.

2020-03-10

WATER: Dataset of forest structure parameter measurements for the fixed forest sampling plots in the Dayekou and Pailugou watershed foci experimental areas (2003-3007)

The fixed forest sample plot is located in the drainage ditch of Dayekou, Qilian Mountain, where the hydrological observation field of Gansu Water Conservation Forest Research Institute is located. From July 2003 to August 2003 and from July 2007 to August 2007, the tree survey of the sample plot was completed by technicians from Gansu Water Conservation Forest Research Institute and Institute of environment and Engineering in cold and dry areas of Chinese Academy of Sciences. A total of 17 fixed forest samples were observed, including the survey of sample plot factors and the survey of each tree. The observation factors of sample plots mainly include forest farm, longitude and latitude coordinates, slope direction, slope position, slope, soil thickness, canopy density of arbor layer, leaf area index, etc. The main instruments used in the measurement are tape, DBH, flower pole, tree measuring instrument, compass and fish eye camera. The measurement factors of each tree include DBH, height of tree, height under branch, crown width in cross slope direction, crown width along slope direction, growth status of single tree, etc. For details, please refer to the metadata of "Heihe River Integrated Remote Sensing joint test: fixed sample plot tree survey data set (2003)" and "Heihe River Integrated Remote Sensing joint test: fixed sample plot tree survey data set (2007)". The Lai in this data set is the supplementary measurement data during the joint remote sensing experiment of Heihe River in 2008. That is to say, the supplementary measurement of Lai has been done in these fixed plots. The supplementary observation time of Lai was from June 1 to 13, 2008. 15 of the 17 fixed plots were investigated. Four instruments were used to observe each plot. In addition to the commercial instruments such as hemiview fish eye camera, LAI-2000 and trac, these instruments also use the canopy analysis instrument made by Beijing Normal University. In each 20 m × 20 m plot, trac measures along two parallel routes perpendicular to the direction of sunlight incidence, which can basically represent the entire quadrat; hemiview fisheye camera and LAI-2000 measure the same points, that is, take three points on the trac line, plus the center point of the quadrat, a total of 7 measuring points. This set of data set can provide ground data for the study of remote sensing inversion method of forest structure parameters.

2020-03-10

WATER: Dataset of forest structure parameter survey at the forest sampling strip around the Dayekou Guantan forest station

Observation time: 2008-06-05 ~ 2008-06-15.A sample strip with a length of 1Km and a width of 20m was set up to cross the super sample plot from the starting point of the super sample plot at the geantan forest station in ohnoguchi.The compass was used to determine the direction of the sample, and the azimuth was 115 degrees north by east, which was basically consistent with the flight route.20 meters ×20 meters of sample land shall be arranged every 50 meters in the sample belt, a total of 20 pieces of sample land.There is some overlap between the sample belt and the super sample land. The center of the no.1 sample land of the sample belt is located at the center of the super sample land. The observation data is shown in the measurement data set per wood of the super sample land.This data set records the observation data of sample 2 ~ 20.These data include the following three parts: 1) tree data of sample plots: each wood of 2 ~ 20 plots was measured: chest diameter, tree height, crown width and undershoot height.Laser altimeter and ultrasonic altimeter were used to measure the height of big trees and under branches, flower rod was used to measure the height of small trees and under branches, chest diameter was used to measure the chest diameter of trees, and crown width was measured with a leather tape measure. 2) sample location data: the sample location is roughly determined by using a tape measure and compass. The coordinates of the center point of the sample are accurately measured using the French THALES DGPS measurement system (model z-max).The observation method is to use two GPS receivers to conduct synchronous static measurement, one in the reference station and the other in the mobile station. The observation lasts 30 minutes. The data processing software provided by the system is used for post-processing difference. 3) LAI observation data: LAI area index (LAI) of each sample plot was measured by lai-2000 and HemiView.

2020-03-10

Heihe 1km FAPAR production (2000-2012)

The algorithm firstly adopts the canopy BRDF model and represents the canopy reflectivity as a function of a series of parameters such as LAI/FAPAR, wavelength, reflectivity of soil and leaves, aggregation index, incidence and observation Angle.The parameter table is established for several key parameters as the input of inversion.Then input the pre-processed surface reflectance data and land cover data, and use look-up table (LUT) inversion to obtain FAPAR products.See references for detailed algorithms. Image format: tif Image size: about 1M per scene Time range: 2000-2012 Temporal resolution: 8 days Spatial resolution: 1km

2020-03-08

LAI production of in 1KM of the Heihe River Basin (2000-2012)

The algorithm firstly adopts the canopy BRDF model and represents the canopy reflectivity as a function of a series of parameters such as LAI/FAPAR, wavelength, reflectivity of soil and leaves, aggregation index, incidence and observation Angle.The parameter table is established for several key parameters as the input of inversion.Then input the pre-processed surface reflectance data and land cover data, and invert LAI products by look-up table (LUT) method.See references for detailed algorithms. Image format: tif Image size: about 1M per scene Time range: 2000-2012 Temporal resolution: 8 days Spatial resolution: 1km

2020-03-08