Current Browsing: plants


Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (phenology camera observation dataset of Sidaoqiao superstation, 2018)

The dataset contains phenological camera observation data collected at the Arou Superstation in the midstream of the Heihe integrated observatory network from June 13 to November 16, 2018. The instrument was developed with data processed by Beijing Normal University. The phenomenon camera integrates data acquisition and data transmission functions. The camera captures high-quality data with a resolution of 1280×720 by looking-downward. The calculation of the greenness index and phenology are following 3 steps: (1) calculate the relative greenness index (GCC, Green Chromatic Coordinate, calculated by GCC=G/(R+G+B)) according to the region of interest, (2) perform gap-filling for the invalid values, filtering and smoothing, and (3) determine the key phenological parameters according to the growth curve fitting (such as the growth season start date, Peak, growth season end, etc.) There are also 3 steps for coverage data processing: (1) select images with less intense illumination, (2) divide the image into vegetation and soil, and (3) calculate the proportion of vegetation pixels in each image in the calculation area. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user, and the filtered result is the final time series coverage. This data set includes relative greenness index (Gcc). Please refer to Liu et al. (2018) for sites information in the Citation section.

2020-07-25

Qilian Mountains integrated observatory network: Dataset of the Heihe River Basin integrated observatory network (phenology camera observation dataset of Daman superstation, 2018)

The dataset contains phenological camera observation data collected at the Arou Superstation in the midstream of the Heihe integrated observatory network from June 13 to November 16, 2018. The instrument was developed with data processed by Beijing Normal University. The phenomenon camera integrates data acquisition and data transmission functions. The camera captures high-quality data with a resolution of 1280×720 by looking-downward. The calculation of the greenness index and phenology are following 3 steps: (1) calculate the relative greenness index (GCC, Green Chromatic Coordinate, calculated by GCC=G/(R+G+B)) according to the region of interest, (2) perform gap-filling for the invalid values, filtering and smoothing, and (3) determine the key phenological parameters according to the growth curve fitting (such as the growth season start date, Peak, growth season end, etc.) There are also 3 steps for coverage data processing: (1) select images with less intense illumination, (2) divide the image into vegetation and soil, and (3) calculate the proportion of vegetation pixels in each image in the calculation area. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user, and the filtered result is the final time series coverage. This data set includes relative greenness index (GCC), phenological phase and fractional cover (FC). Please refer to Liu et al. (2018) for sites information in the Citation section.

2020-07-25

Qilian mountains integrated observatory network: Dataset of Heihe integrated observatory network (Phenology camera observation dataset of Arou superstation, 2018)

The dataset contains phenological camera observation data collected at the Arou Superstation in the midstream of the Heihe integrated observatory network from June 13 to November 16, 2018. The instrument was developed with data processed by Beijing Normal University. The phenomenon camera integrates data acquisition and data transmission functions. The camera captures high-quality data with a resolution of 1280×720 by looking-downward. The calculation of the greenness index and phenology are following 3 steps: (1) calculate the relative greenness index (GCC, Green Chromatic Coordinate, calculated by GCC=G/(R+G+B)) according to the region of interest, (2) perform gap-filling for the invalid values, filtering and smoothing, and (3) determine the key phenological parameters according to the growth curve fitting (such as the growth season start date, Peak, growth season end, etc.) There are also 3 steps for coverage data processing: (1) select images with less intense illumination, (2) divide the image into vegetation and soil, and (3) calculate the proportion of vegetation pixels in each image in the calculation area. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user, and the filtered result is the final time series coverage. This data set includes relative greenness index (Gcc). Please refer to Liu et al. (2018) for sites information in the Citation section.

2020-07-25

Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (phenology camera observation data set of mixed forest superstation, 2018)

The dataset contains phenological camera observation data collected at the Arou Superstation in the midstream of the Heihe integrated observatory network from June 13 to November 16, 2018. The instrument was developed with data processed by Beijing Normal University. The phenomenon camera integrates data acquisition and data transmission functions. The camera captures high-quality data with a resolution of 1280×720 by looking-downward. The calculation of the greenness index and phenology are following 3 steps: (1) calculate the relative greenness index (GCC, Green Chromatic Coordinate, calculated by GCC=G/(R+G+B)) according to the region of interest, (2) perform gap-filling for the invalid values, filtering and smoothing, and (3) determine the key phenological parameters according to the growth curve fitting (such as the growth season start date, Peak, growth season end, etc.) There are also 3 steps for coverage data processing: (1) select images with less intense illumination, (2) divide the image into vegetation and soil, and (3) calculate the proportion of vegetation pixels in each image in the calculation area. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user, and the filtered result is the final time series coverage. This data set includes relative greenness index (Gcc). Please refer to Liu et al. (2018) for sites information in the Citation section.

2020-07-25

Basic datasets of the Tibetan Plateau in Chinese Cryospheric Information System

Chinese Cryospheric Information System is a comprehensive information system for the management and analysis of Chinese Cryospheric data. The establishment of Chinese Cryospheric Information System is to meet the needs of earth system science, to provide parameters and validation data for the development of response and feedback model of frozen soil, glacier and snow cover to global change under GIS framework; on the other hand, it is to systemically sort out and rescue valuable cryospheric data, to provide a scientific, efficient and safe management and division for it Analysis tools. The basic datasets of the Tibet Plateau mainly takes the Tibetan Plateau as the research region, ranging from longitude 70 -- 105 ° east and latitude 20 -- 40 ° north, containing the following types of data: 1. Cryosphere data. Includes: Permafrost type (Frozengd), (Fromap); Snow depth distribution (Snowdpt) Quatgla (Quatgla) 2. Natural environment and resources. Includes: Terrain: elevation, elevation zoning, slope, slope direction (DEM); Hydrology: surface water (Stram_line), (Lake); Basic geology: Quatgeo, Hydrogeo; Surface properties: Vegetat; 4. Climate data: temperature, surface temperature, and precipitation. 3. Socio-economic resources (Stations) : distribution of meteorological Stations on the Tibetan Plateau and it surrounding areas. 4. Response model of plateau permafrost to global change (named "Fgmodel"): permafrost distribution data in 2009, 2049 and 2099 were projected. Please refer to the following documents (in Chinese): "Design of Chinese Cryospheric Information System.doc", "Datasheet of Chinese Cryospheric Information System.DOC", "Database of the Tibetan Plateau.DOC" and "Database of the Tibetan Plateau 2.DOC".

2020-06-23

1:100,000 land use dataset of Sichuan province (1995)

This data was derived from "1: 100,000 Land Use Data of China". Based on Landsat MSS, TM and ETM remote sensing data, 1: 100,000 Land Use Data of China was compiled within three years by a remote sensing scientific and technological team of 19 research institutes affiliated to the Chinese Academy of Sciences, which was organized by the “Remote Sensing Macroinvestigation and Dynamic Research on the National Resources and Environment", one of the major application programs in Chinese Academy of Sciences during the "Eighth Five-year Plan". This data adopts a hierarchical land cover classification system, which divides the country into 6 first-class categories (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining areas, residential land and unused land) and 31 second-class categories. This is the most accurate land use data product in our country at present. It has already played an important role in national land resources survey, hydrology and ecological research.

2020-06-11

1:100000 landuse dataset of Shaanxi province (2000)

This data was derived from "1: 100,000 Land Use Data of China". Based on Landsat MSS, TM and ETM remote sensing data, 1: 100,000 Land Use Data of China was compiled within three years by a remote sensing scientific and technological team of 19 research institutes affiliated to the Chinese Academy of Sciences, which was organized by the “Remote Sensing Macroinvestigation and Dynamic Research on the National Resources and Environment", one of the major application programs in Chinese Academy of Sciences during the "Eighth Five-year Plan". This data adopts a hierarchical land cover classification system, which divides the country into 6 first-class categories (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining areas, residential land and unused land) and 31 second-class categories. This is the most accurate land use data product in our country at present. It has already played an important role in national land resources survey, hydrology and ecological research.

2020-06-10

The vegetation map at the 1:4,000,000 of China (1979)

This dataset: Editor-in-Chief: Hou Xueyu Drawing: Hou Xueyu, Sun Shizhou, Zhang Jingwei, He Miaoguang. Wang Yifeng, Kong Dezhen, Wang Shaoqing Publishing: Map Press Issue: Xinhua Bookstore Year: 1979 Scale: 1: 4,000,000 It took five years to complete from May 1972 to July 1976. In the process of drawing legends and mapping, referring to the vast majority of vegetation survey data (including maps and texts) after 1949 in China, we held more than a dozen mapping seminars involving researchers from inside and outside the institute. During the layout after the mapping work was completed, many new survey data were added, especially vegetation data in western Tibet. The nature of this map basically belongs to the current vegetation map, including two parts of natural vegetation and agricultural vegetation. The legend of natural vegetation is arranged according to the seven vegetation groups. They are mainly divided according to the appearance of plant communities and certain ecological characteristics. The concept of agricultural vegetation community, like the natural vegetation community, also has a certain life form (appearance, structure, layer), species composition and a certain ecological location. In 1990, the State Key Laboratory of Resources and Environmental Information Systems of the Institute of Geographical Sciences and Resources, Chinese Academy of Sciences completed the digitization of this map, and wrote relevant data description documents. The digitized data also adopt equal product cone projection and can be converted into other projections by GIS software. This data includes a vector file in e00 format, a Chinese vegetation coding design description, a dataset description, a vegetation data layer attribute data table, and a scanned "People's Republic of China Vegetation Map-Brief Description" and other files. Data projection: Projection: Albers false_easting: 0.000000 false_northing: 0.000000 central_meridian: 110.000000 standard_parallel_1: 25.000000 standard_parallel_2: 47.000000 latitude_of_origin: 0.000000 Linear Unit: Meter (1.000000) Geographic Coordinate System: Unknown Angular Unit: Degree (0.017453292519943299) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Unknown Spheroid: Clarke_1866 Semimajor Axis: 6378206.400000000400000000 Semiminor Axis: 6356583.799999999800000000 Inverse Flattening: 294.978698213901000000

2020-06-09

Landcover dataset of the Shulehe River Basin (2000)

The data is the Shule River Basin land cover dataset, which is derived from "China's 1: 100,000 Land Use Data Set" in 2000. It is based on Landsat MSS, TM and ETM remote sensing data within three years by satellite remote sensing. This data adopts a hierarchical land cover classification system, which divides the country into 6 first-class categories (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining areas, residential land and unused land) and 31 second-class categories. The attribute fields include: Area, Perimeter, Code(Land code), Name (land type).

2020-06-08

Vegetation map (1:1,000,000) in the Heihe River basin (2001)

The data is the digitization of the Heihe River basin part of the 1:1 million Vegetation Atlas of China, 1:1000, 000 Vegetation Atlas of China is edited by academician Hou Xueyu, a famous vegetation ecologist (Hou Xueyu, 2001). It is jointly compiled by more than 250 experts from 53 units such as research institutes of Chinese Academy of Sciences, relevant ministries and commissions, relevant departments of various provinces and regions, colleges and universities. It is another summative achievement of vegetation ecologists in China over 40 years after the publication of monographs such as vegetation of China Basic map of natural resources and natural conditions of the family. It is based on the rich first-hand information accumulated by vegetation surveys carried out throughout the country over the past half century, and the materials obtained by modern technologies such as aerial remote sensing and satellite images, as well as the latest research achievements in geology, soil science and climatology. It reflects in detail the distribution of vegetation units of 11 vegetation type groups, 796 formations and sub formations of 54 vegetation types, horizontal and vertical zonal distribution laws, and also reflects the actual distribution of more than 2000 dominant species of plants, major crops and cash crops in China, as well as the close relationship between dominant species and soil and ground geology. The atlas is a kind of realistic vegetation map, reflecting the recent quality of vegetation in China.

2020-06-05