Current Browsing: Remote Sensing Data


Integrated remote sensing experiment of Heihe River: ENVISAT AATSR remote sensing data set

Advanced along orbit scanning radiometer (AATSR) is an advanced tracking scanning radiometer sensor mounted on the European Space Agency ENVISAT satellite. It is one of many high-precision and stable infrared radiometers for retrieving sea surface temperature (SST). Its accuracy can reach 0.3k, and it can also be used to record meteorological data. AATSR is a multi-channel imaging radiometer. Its main goal is to provide global ocean surface temperature with high accuracy and stability for monitoring the earth's climate change. At present, there are 38 ENVISAT AATSR images in Heihe River Basin. The acquisition time is 2008-05-17 (2 scenes), 2008-05-27 (2 scenes), 2008-05-30 (2 scenes), 2008-06-02 (2 scenes), 2008-06-12 (2 scenes), 2008-06-15 (2 scenes), 2008-06-18 (2 scenes), 2008-06-21 (2 scenes), 2008-07-04 (2 scenes), 2008-07-072008-07-102008-07-172008-07-202008-07-232008-07-262008-08-022008-08-052008-08-082008 -08-11,2008-08-14,2008-08-21,2008-08-24,2008-08-27,2008-08-30,2008-09-06,2008-09-12,2008-09-15,2008-09-18,2008-09-25。 The product level is L1B, which has been corrected by radiation but not by geometry. The ENVISAT AATSR remote sensing data set of Heihe comprehensive remote sensing joint test was obtained through the China EU "dragon plan" project (Project No.: 5322) (see the data use statement for details).

2020-03-09

Heihe integrated remote sensing joint experiment: ASTER Remote Sensing Data Set (2007-2008)

ASTER data in 2007 and 2008 are 15 scenes, covering the whole Heihe River Basin. Acquisition time: 2007-10-22 (1 scene), 2007-11-14 (1 scene), 2007-11-23 (1 scene), 2007-12-04 (1 scene), 2008-01-28 (1 scene), 2008-02-13 (1 scene), 2008-05-03 (4 scenes), 2008-05-05 (1 scene), 2008-05-17 (1 scene), 2008-06-04 (2 scenes), 2008-06-13 (1 scene). The product level is L1B, which has been calibrated by radiation and geometry. The ASTER Remote sensing data set of Heihe integrated remote sensing joint experiment was obtained from NASA's data website (https://wist.echo.nasa.gov/) through international cooperation.

2020-03-09

Integrated remote sensing joint experiment of Heihe River: alos PALSAR remote sensing data set (2008)

The phased array type l-land synthetic aperture radar (PALSAR) is a phased array L-band SAR sensor mounted on alos satellite. The sensor has three observation modes: high resolution, scanning synthetic aperture radar and polarization, which make it possible to obtain a wider ground width than the general SAR. At present, there are 13 scenes of ALOS pallsar data in Heihe River Basin. The coverage and acquisition time are as follows: 1 scene in the northeast of Zhangye City, HH / HV polarization, 2008-04-25; 2 scenes in Binggou basin + Arjun encrypted observation area, HH / HV polarization, 2008-05-122008-06-27; 2 scenes in Dayekou basin + Yingke oasis intensified observation area, HH / HV polarization, 2008-05-122008-06-27; observation station encrypted observation area Survey area + Linze station densified observation area + Linze grassland densified observation area 2 scenes, HH / HV polarization, time 2008-05-122008-06-27; Linze station densified observation area 1 scene, HH / HV polarization, time 2008-05-12; Binggou basin densified observation area 1 scene, HH / HV polarization, time 2008-07-14; bindukou densified observation area 4 scenes, 2008-04-25 2 scenes, HH / HV polarization, 2008-06-10 2 scenes, HH pole Change. The product level is L1 without geometric correction. The alos PALSAR remote sensing data set of Heihe comprehensive remote sensing joint experiment was obtained from JAXA by Dr. Takeo tadono, researcher Ye Qinghua and Professor Shi Jiancheng (the cooperation project between Qinghai Tibet Institute of Chinese Academy of Sciences and JAXA). (Note: "+" means to overwrite at the same time)

2020-03-09

Monthly evapotranspiration dataset with 30m spatial resolution over oasis in the middle reaches and 1 km spatial resolution over the Heihe River Basin (2014)

Using ETWatch model with the system complete the heihe river basin scale 1 km resolution 2014 surface evaporation data with middle oasis 30 meters resolution on scale data set, the surface evaporation raster image data of the data sets, it is the time resolution of scale from month to month, the spatial resolution of 1 km scale (covering the whole basin) and 30 meters scale (middle oasis area), the unit is mm.Data types include monthly, quarterly, and annual data. The projection information of the data is as follows: Albers equal-area cone projection, Central longitude: 110 degrees, First secant: 25 degrees, Second secant: 47 degrees, Coordinates by west: 4000000 meter. File naming rules are as follows: 1) 1 km resolution remote sensing data set Monthly cumulative ET value file name: heihe-1km_2014m01_eta.tif Heihe refers to heihe river basin, 1km means the resolution is 1km, 2014 means the year of 2014, m01 means the month of January, eta means the actual evapotranspiration data, and tif means the data is tif format. Name of quarterly cumulative ET value file: heihe-1km_2014s01_eta.tif Heihe represents the heihe river basin, 1km represents the resolution of 1km, 2014 represents the year of 2014, s01 represents the period from January to march, and the first quarter, eta represents the actual evapotranspiration data, and tif represents the data in tif format. Annual cumulative value file name: heihe-1km_2014y_eta.tif Heihe represents the heihe river basin, 1km represents the resolution of 1km, 2014 represents the year of 2014, y represents the year, eta represents the actual evapotranspiration data, and tif represents the data in tif format. 2) remote sensing data set with a resolution of 30 meters Monthly cumulative ET value file name: heihe-midoasa-30m_2014m01_eta.tif Heihe represents the heihe river basin, midoasis represents the mid-range oasis area, 30m represents the resolution of 30 meters, 2014 represents 2014, m01 represents January, eta represents the actual evapotranspiration data, and tif represents the data in tif format. Name of quarterly cumulative ET value file: heihe-midoasa-30m_2014s01_eta.tif Heihe represents the heihe river basin, midoasis represents the mid-range oasis area, 30m represents the resolution of 30 meters, 2014 represents 2014, s01 represents january-march, and the first quarter, eta represents the actual evapotranspiration data, and tif represents the data in tif format. Annual cumulative value file name: heihe-midoasa-30m_2014y_eta.tif Heihe represents the heihe river basin, midoasis represents the mid-range oasis area, 30m represents the resolution of 30 meters, 2014 represents the year of 2014, y represents the year, eta represents the actual evapotranspiration data, and tif represents the data in tif format.

2020-03-08

Remote sensing inversion product of diurnal evapotranspiration in the middle reaches of Heihe River (2012)

Evapotranspiration monitoring is very important for agricultural water resource management, regional water resource utilization planning and sustainable development of social economy. The limitation of traditional monitoring et method is that it can't be observed in large area at the same time, so it can only be limited to the observation point. Therefore, the cost of personnel and equipment is relatively high. It can't provide the ET data of different land use types and crop types. Remote sensing can be used for quantitative monitoring of ET. the feature of remote sensing information is that it can reflect not only the macro structural characteristics of the earth's surface, but also the micro local differences. This data uses MODIS data and m-sebal model from June to September 2012 and time scale expansion scheme based on reference evaporation ratio to estimate the spatial and temporal distribution of evapotranspiration in the whole growth season of the middle reaches of Heihe River, and uses ground observation data to evaluate m-sebal model and time scale expansion scheme in detail. Its time resolution is day by day, spatial resolution is 250m, and data coverage is in the middle reaches of Heihe River, unit: mm. The projection information of the data is as follows: UTM projection, 47N.

2020-03-08

HiWATER: Dataset of ground truth measurements synchronizing with airborne PLMR mission in the Yingke oasis and Huazhaizi desert steppe on June 28-29, 2012

The first dataset of ground truth measurements synchronizing with airborne Polarimetric L-band Multibeam Radiometer (PLMR) mission was obtained in the Yingke oasis and Huazhaizi desert steppe on 28-29 June, 7, 10, 26 July, 2 August, 2012 (UTC+8). The dataset of ground truth measurements synchronizing with airborne Polarimetric L-band Multibeam Radiometer (PLMR) mission was obtained in the Linze Inland River Basin Comprehensive Research Station on 3 July, 2012. PLMR is a dual-polarization (H/V) airborne microwave radiometer with a frequency of 1.413 GHz, which can provide multi-angular observations with 6 beams at ±7º, ±21.5º and ±38.5º. The PLMR spatial resolution (beam spot size) is approximately 0.3 times the altitude, and the swath width is about twice the altitude. The measurements were conducted in the southwest part of the Zhangye Oasis, which included two sampling plots. One was located in Gobi desert with an area of 1 km × 1 km. Due to its homogeneous landscape, around 10 points were sampled to acquire the situation of soil water content. The other sampling plot was designed in farmlands with a dominant plant type of maize. Ground measurements took place along 16 transects, which were arranged parallelly with an interval of 160 m between each other in the east-west direction. In each 2.4 km long transect, soil moisture was sampled at every 80 m in the north-south direction. Steven Hydro probes were used to collect soil moisture and other measurements. For each sampling point in farmland, two measurements were acquired within an area of 1 m2, with one for the soil covered by plastic film (point name was tagged as LXPXXA) and the other for exposed soil (point name was tagged as LXPXXB). The field campaign started from 11:00 AM, but stopped at 4:00 PM on 28 June because of rain. The rest of measurements were completed from 10:30 AM to 5:30 PM on 29 June. Concurrently with soil moisture sampling, vegetation properties were measured at around 10 locations within the farmland sampling plot. Observation items included: Soil parameters: volumetric soil moisture (inherently converted from measured soil dielectric constant), soil temperature, soil dielectric constant, soil electric conductivity. Vegetation parameters: biomass, vegetation water content, canopy height. Data and data format: This dataset includes two parts of measurements, i.e. soil and vegetation parameters. The former is as shapefile, with measured items stored in its attribute table. The measured vegetation parameters are recorded in an Excel file.

2019-09-15

HiWATER: Land surface temperature product in the midstream of the Heihe River Basin (4th, July, 2012)

On 4 July 2012 (UTC+8), TASI sensor carried by the Harbin Y-12 aircraft was used in a visible near Infrared hyperspectral airborne remote sensing experiment, which is located in Linze region and Heihe riverway. The relative flight altitude is 2500 meters. Land surface temperature product was obtained at a resolution of 3 m using a modified temperature/emissivity separation algorithm based on TASI surface radiance data. The product were validated with in situ ground measurements. The validation results indicated that the Land surface temperature product agreed with the ground LSTs well with RMSE lower than 1.5 K.

2019-09-15

HiWATER: Thermal-infrared hyperspectral radiometer (10th, July, 2012)

On 10 July 2012 (UTC+8), TASI sensor carried by the Harbin Y-12 aircraft was used in a visible near Infrared hyperspectral airborne remote sensing experiment, which is located in the observation experimental area (30×30 km), Linze region and Heihe riverway. The relative flight altitude is 2500 meters. The wavelength of TASI is 8-11.5 μm with a spatial resolution of 3 meters. Through the ground sample points and atmospheric data, the data are recorded in surface radiance processed by geometric correction and atmospheric correction.

2019-09-15

HiWATER: PROBA CHRIS dataset

This dataset includes seven scenes; two scenes cover the Dayekou catchment on (yy-mm-dd) 2012-08-19 and 2012-08-28, one scene covers the airport desert experimental site on 2012-06-29, three scenes cover the Daman foci experimental area on 2012-06-21, 2012-07-10 and 2012-08-27, and one scene covers the natural oasis eco-hydrology experimental area in the lower reaches of the Heihe River Basin. The data were all acquired around 9:00 (BJT) of full swath mode with data product of Level 1A. PROBA CHRIS dataset was acquired through the European Space Agency (ESA)-Ministry of Science and Technology of China (MOST) Cooperative Dragon 2 (project ID: 5322) and Dragon 3 (project ID: 10649) Programme.

2019-09-15

HiWATER: Dataset of airborne microwave radiometers (L bands) mission in the river way of the midstream of the Heihe River Basin on Jul. 4, 2012

The dataset of airborne Polarimetric L-band Multibeam Radiometers (PLMR) was acquired on 4 July, 2012, located along the riverway of Heihe River in the middle reaches of the Heihe River Basin. The aircraft took off at 10:50 am (UTC+8) from Zhangye airport and landed at 14:50 pm, with the flight time of 4 hours. The flight was performed in the altitude of about 1000 m and at the speed of about 220-250 km during the observation, corresponding to an expected ground resolution of about 300 m. The PLMR instrument flown on a small aircraft operates at 1.413 GHz (L-band), with both H- and V-polarizations at incidence angles of ±7.5°, ±21.5° and ±38.5°. PLMR ‘warm’ and ‘cold’ calibrations were performed before and after each flight. The processed PLMR data include 2 DAT files (v-pol and h-pol separately) and 1 KMZ file for each flying day. The DAT file contains all the TB values together with their corresponding beam ID, incidence angle, location, time stamp (in UTC) and other flight attitude information as per headings. The KMZ file shows the gridded 1-km TB values corrected to 38.5 degrees together with flight lines. Cautions should be taken when using these data, as the RFI contaminations are often higher than expected at v-polarization.

2019-09-15