Current Browsing: Remote Sensing Data


HiWATER: Dataset of fractional vegetation cover and biomass observed in the middle reaches of the Heihe River Basin (2014)

This data includes the coverage data set of vegetation in one growth cycle in five stations of Daman super station, wetland, desert, desert and Gobi, and the biomass data set of maize and wetland reed in one growth cycle in Daman super station. The observation time starts from May 10, 2014 and ends on September 11, 2014. 1 coverage observation 1.1 observation time 1.1.1 super station: the observation period is from May 10 to September 11, 2014. Before July 20, the observation is once every five days. After July 20, the observation is once every 10 days. A total of 17 observations are made. The specific observation time is as follows:; Super stations: May 10, 15, 20, 25, 30, 10, 15, 20, 20, 30, 30, 30, 30, 30, 7, 10, 10, 10, 10, 10, 15 1.1.2 other four stations: the observation period is from May 20 to September 15, 2014, once every 10 days, and 11 observations have been made in total. The specific observation time is as follows:; Other four stations: May 10, 2014, May 20, 2014, May 30, 2014, June 10, 2014, June 20, 2014, June 30, July 10, 2014, July 20, August 5, 2014, August 17, 2014, September 11, 2014 1.2 observation method 1.2.1 measuring instruments and principles: The digital camera is placed on the instrument platform at the front end of the simple support pole to keep the shooting vertical and downward and remotely control the camera measurement data. The observation frame can be used to change the shooting height of the camera and realize targeted measurement for different types of vegetation. 1.2.2 design of sample Super station: take 3 plots in total, the sample size of each plot is 10 × 10 meters, take photos along two diagonal lines in turn each time, take 9-10 photos in total; Wetland station: take 2 sample plots, each plot is 10 × 10 meters in size, and take 9-10 photos for each survey; 3 other stations: select 1 sample plot, each sample plot is 10 × 10 meters in size, and take 9-10 photos for each survey; 1.2.3 shooting method For the super station corn and wetland station reed, the observation frame is directly used to ensure that the camera on the observation frame is far higher than the vegetation crown height. Samples are taken along the diagonal in the square quadrat, and then the arithmetic average is made. In the case of a small field angle (< 30 °), the field of view includes more than 2 ridges with a full cycle, and the side length of the photo is parallel to the ridge; in the other three sites, due to the relatively low vegetation, the camera is directly used to take pictures vertically downward (without using the bracket). 1.2.4 coverage calculation The coverage calculation is completed by Beijing Normal University, and an automatic classification method is adopted. For details, see article 1 of "recommended references". By transforming RGB color space to lab space which is easier to distinguish green vegetation, the histogram of green component A is clustered to separate green vegetation and non green background, and the vegetation coverage of a single photo is obtained. The advantage of this method lies in its simple algorithm, easy to implement and high degree of automation and precision. In the future, more rapid, automatic and accurate classification methods are needed to maximize the advantages of digital camera methods. 2 biomass observation 2.1 observation time 2.1.1 corn: the observation period is from May 10 to September 11, 2014, once every 5 days before July 20, and once every 10 days after July 20. A total of 17 observations have been made. The specific observation time is as follows:; Super stations: May 10, 15, 20, 25, 30, 10, 15, 20, 20, 30, 30, 30, 30, 30, 7, 10, 10, 10, 10, 10, 15 2.1.2 Reed: the observation period is from May 20 to September 15, 2014, once every 10 days, and 11 observations have been made in total. The specific observation time is as follows:; 2014-5-10、2014-5-20、2014-5-30、2014-6-10、2014-6-20、2014-6-30、2014-7-10、2014-7-20、2014-8-5、2014-8-17、2014-9-11 2.2 observation method Corn: select three sample plots, and select three corn plants that represent the average level of each sample plot for each observation, respectively weigh the fresh weight (aboveground biomass + underground biomass) and the corresponding dry weight (85 ℃ constant temperature drying), and calculate the biomass of unit area corn according to the plant spacing and row spacing; Reed: set two 0.5m × 0.5m quadrats, cut them in the same place, and weigh the fresh weight (stem and leaf) and dry weight (constant temperature drying at 85 ℃) of reed respectively. 2.3 observation instruments Balance (accuracy 0.01g), oven. 3 data storage All the observation data were recorded in the excel table first, and then stored in the excel table. At the same time, the data of corn planting structure was sorted out, including the plant spacing, row spacing, planting time, irrigation time, except for the parent time, harvesting time and other relevant information.

2020-03-14

HiWATER: Dataset of Soil freeze/thaw experiment observed in the midstream of the Heihe River Basin from Nov. 15 to Nov. 16, 2013

This data set includes the continuous observation data set of soil texture, roughness and surface temperature measured by the vehicle borne microwave radiometer on November 15-16, 2013 in the farmland of jiushe, Kangning, Zhangye City, Gansu Province. The surface temperature includes the soil temperature data observed by the temperature sensor at the soil depth of 0 cm, 1 cm, 3 cm, 5 cm and 10 cm. The time frequency of conventional observation of soil temperature is 5 minutes. Data details: 1. Time: November 15-16, 2013 2. data: Bright temperature: observed by vehicle mounted multi frequency passive microwave radiometer, including 6.925, 18.7 and 36.5ghz v-polarization and H-polarization data (10.65ghz band instrument damaged) Soil temperature: use the sensor installed on dt85 to measure the soil temperature of 0cm, 1cm, 3cm, 5cm and 10cm Soil texture: soil samples measured in Beijing Normal University Soil roughness: measured by roughness meter provided by northeast geography 3. Data size: 4.8m 4. Data format:. Xls

2020-03-13

HiWATER: Dataset of ground truth measurements synchronizing with airborne PLMR mission in the Daman irrigation district (July 26, 2012)

On July 26, 2012, the airborne ground synchronous observation was carried out in the plmr quadrat in the dense observation area of Daman. Plmr (polarimetric L-band multibeam radiometer) is a dual polarized (H / V) L-band microwave radiometer, with a center frequency of 1.413 GHz, a bandwidth of 24 MHz, a resolution of 1 km (relative altitude of 3 km), six beam simultaneous observations, an incidence angle of ± 7 °, ± 21.5 °, ± 38.5 °, and a sensitivity of < 1K. The flight mainly covers the middle reaches of the artificial oasis eco hydrological experimental area. The local synchronous data set can provide the basic ground data set for the development and verification of passive microwave remote sensing soil moisture inversion algorithm. Quadrat and sampling strategy: The observation area is located in the matrix of the dense observation area of Daman, and the detailed plan with an area of 3.0KM × 2.4km is selected to carry out synchronous observation on the underlying surface of oasis. The selection of the sample is mainly based on the representativeness of the surface coverage, accessibility and observation (road consumption) time, so as to obtain the comparison of brightness and temperature with plmr observation. Considering the resolution of plmr observation, 5 splines (east-west distribution) were collected at an interval of 450 m in the east-west direction. Each line has 31 points (north-south direction) at an interval of 100 m, and 5 hydraprobe data acquisition systems (HDAS, reference 2) were used for simultaneous measurement. Measurement content: About 150 points on the quadrat were obtained, each point was observed twice, that is to say, two times were observed at each sampling point, one time was inside the film (marked as a in the data record) and one time was outside the film (marked as B in the data record). As the HDAS system uses pogo portable soil sensor, the soil temperature, soil moisture (volume moisture content), loss tangent, soil conductivity, real part and imaginary part of soil complex dielectric are observed. Because the vegetation in this area has been sampled and observed once every five days, no special vegetation synchronous sampling has been carried out on that day. Data: This data set consists of two parts: soil moisture observation and vegetation observation. The former saves data in vector file format, and the spatial location is the location of each sampling point (WGS84 + UTM 47N). Soil moisture and other measurement information are recorded in attribute file.

2020-03-13

HiWATER: Dataset of ground truth measurements synchronizing with TerraSAR-X satellite overpassing in the Daman Superstation on June 26, 2012

On June 26, 2012, the satellite transit ground synchronous observation was carried out in the TerraSAR-X sample near the super station in the dense observation area of Daman. TerraSAR-X satellite carries X-band synthetic aperture radar (SAR). The daily transit image is HH / VV polarized, with a nominal resolution of 3 m, an incidence angle of 22-24 ° and a transit time of 19:03 (Beijing time), which mainly covers the ecological and hydrological experimental area of the middle reaches artificial oasis. The local synchronous data set can provide the basic ground data set for the development and verification of active microwave remote sensing soil moisture retrieval algorithm. Quadrat and sampling strategy: Six natural blocks are selected in the southeast of the super station, with an area of about 100 m × 100 m. One plot in the northwest corner of the sample plot is watermelon field, others are corn. The basis of sample selection is: (1) considering different vegetation types, i.e. watermelon and corn; (2) considering the visible light pixel, the sample size of 100m square can guarantee at least 4 30 M-pixel is located in the sample; (3) the location of the sample is near the super station, with convenient transportation. The observation of the super station is in the north, and there is a water net node on both sides of the East and the west, which makes it possible to integrate these observations in the future; (4) in addition, there are some obvious points around the sample, which can ensure that the geometric correction of the SAR image is more accurate in the future. Considering the resolution of the image, 21 splines (distributed from east to West) are collected at 5m intervals. Each line has 21 points (north-south direction) at 5m intervals. Three hydroprobe data acquisition systems (HDAS, reference 2) are used to measure at the same time. The sampling interval is controlled by the scale and moving splines on the measuring line to make up for the lack of using hand-held GPS. Measurement content: About 440 points on the quadrat were obtained, and each point was observed twice, i.e. two times in each sampling point, one time inside the film (marked as a in the data record) and one time outside the film (marked as B in the data record); although the watermelon land was also covered with film, considering that it was not laid horizontally, only the soil moisture at the non covered position was measured (marked as B in the two data records). As the HDAS system uses pogo portable soil sensor, the soil temperature, soil moisture (volume moisture content), loss tangent, soil conductivity, real part and imaginary part of soil complex dielectric are observed. Because the vegetation in this area has been sampled and observed once every five days, no special vegetation synchronous sampling has been carried out on that day. Data: The data format of this data set is vector file, the spatial location is the location of each sampling point (WGS84 + UTM 47N), and the measurement information of soil moisture is recorded in the attribute file.

2020-03-13

HiWATER: Dataset of ground truth measurements synchronizing with TerraSAR-X satellite overpassing in the Daman Superstation (June 15, 2012)

On June 15, 2012, the satellite transit ground synchronous observation was carried out in the TerraSAR-X sample near the super station in the dense observation area of Daman. TerraSAR-X satellite carries X-band synthetic aperture radar (SAR). The daily transit image is HH / VV polarized, with a nominal resolution of 3 m, an incidence angle of 22-24 ° and a transit time of 19:03 (Beijing time), which mainly covers the ecological and hydrological experimental area of the middle reaches artificial oasis. The local synchronous data set can provide the basic ground data set for the development and verification of active microwave remote sensing soil moisture retrieval algorithm. Quadrat and sampling strategy: Six natural blocks are selected in the southeast of the super station, with an area of about 100 m × 100 m. One plot in the northwest corner of the sample plot is watermelon field, others are corn. The basis of sample selection is: (1) considering different vegetation types, i.e. watermelon and corn; (2) considering the visible light pixel, the sample size of 100m square can guarantee at least 4 30 M-pixel is located in the sample; (3) the location of the sample is near the super station, with convenient transportation. The observation of the super station is in the north, and there is a water net node on both sides of the East and the west, which makes it possible to integrate these observations in the future; (4) in addition, there are some obvious points around the sample, which can ensure that the geometric correction of the SAR image is more accurate in the future. Considering the resolution of the image, 21 splines (distributed from east to West) are collected at 5 m intervals. Each line has 23 points (north-south direction) at 5 m intervals. Four hydroprobe data acquisition systems (HDAS, reference 2) are used to measure at the same time. The sampling interval is controlled by the scale and moving splines on the measuring line to make up for the lack of using hand-held GPS. Measurement content: About 500 points on the quadrat were obtained, and each point was observed twice, i.e. in each sampling point, once in the film (marked a in the data record) and once out of the film (marked b in the data record); although the watermelon land was also covered with film, considering that it was not laid horizontally, only the soil moisture at the non covered position was measured (marked b in both data records). As the HDAS system uses pogo portable soil sensor, the soil temperature, soil moisture (volume moisture content), loss tangent, soil conductivity, real part and imaginary part of soil complex dielectric are observed. The vegetation team completed the measurement of biomass, Lai, vegetation water content, plant height, row ridge distance, chlorophyll, etc. Data: This data set includes two parts: soil moisture observation and vegetation observation. The former saves the data format as a vector file, the spatial location is the location of each sampling point (WGS84 + UTM 47N), and the measurement information of soil moisture is recorded in the attribute file; the vegetation sampling information is recorded in the excel table.

2020-03-13

HiWATER: Dataset of differential GPS in the middle and upper reaches of the Heihe River Basin (2012)

The purpose of differential GPS positioning survey is to unify multiple survey areas into the same coordinate system and realize accurate absolute positioning through joint survey with national high-level control point coordinates. Under the national geodetic coordinate system of 2000, the accurate positioning of flux observation matrix, hulugou small watershed, tianmuchi small watershed and dayokou watershed and target is completed. In order to realize the geometric correction and absolute positioning of optical image, SAR image and airborne lidar data, the layout of ground control points and high-precision measurement are completed. In the middle reaches of the area, one national high-level control point is jointly surveyed in the five directions of East, South, West, North and middle. Measuring instrument: There are 3 sets of triple R8 GNSS system. Measurement principle: For the control network encryption point, it is connected with the high-level known points in four quadrants around the survey area and distributed evenly in the survey area. For the ground control point (GCP), the obvious characteristic points (such as house corner, road intersection, inflection point, etc.) of the ground layout target and the independent ground objects are adopted and evenly distributed in the survey area. For the ground points with high accuracy requirements, the principle of average value of multiple (at least three) measurements is adopted. Measurement method: In the test area, the control network is encrypted, and GPS static measurement and national high-level control network are used for joint measurement and calculation. During measurement, multiple GPS receivers conduct static synchronous observation at different stations, and the observation time is strictly in accordance with the control network measurement specifications. The ground points in the test area are accurately located. GPS-RTK positioning technology is used and the national high-level control points are used to calibrate to the local coordinate system. When the mobile station obtains the fixed solution during the coordinate acquisition, the measurement is carried out again and the single measurement lasts for 5S. Measuring position: (1) Flux observation matrix 17 stations, Las tower, waternet, soilnet and bnunet nodes in the core area of flux observation matrix; ground control points in CASI flight area; ground corner reflector positions in radar coverage area; ground target positions in lidar flight area. (2) Hulugou small watershed Ground target location of lidar flight area. (3) Tianmuchi small watershed Ground target location of lidar flight area. (4) Dayokou Basin Satellite image geometric correction ground control point. Data format: GPS static survey, the original data format is ". Dat" and ". T01" (or ". T02") files (or converted renix data) and "field record". GPS-RTK survey, the original project is ". Job" file (or converted ". DC" file). The test results are submitted in the format of exported ". CSV" data, which can be viewed and edited by Excel software. Measurement time: June 19, 2012 to July 30, 2012

2020-03-13

WATER:Dataset of Soil freeze/thaw experiment Observed in the upper reaches of the Heihe River Basin from Nov. 10 to Nov. 14, 2013

This data set includes the continuous observation data set of light temperature and surface temperature and humidity measured by the vehicle borne microwave radiometer from November 10 to 14, 2013 in aroucaochang, arouxiang, Qilian County, Qinghai Province. The surface temperature and humidity include six layers of temperature sensor at the soil depth of 1cm, 3cm, 5cm, 10cm, 15cm, 20cm and six layers of humidity sensor at the soil depth of 0-5cm. The time frequency of routine observation of soil temperature and humidity is 5 minutes. Data details: 1. Time: November 10-14, 2013 2. data: Brightness temperature: observed by vehicle mounted multi frequency passive microwave radiometer, including 6.925, 10.65, 18.7 and 36.5ghz V polarization and H polarization data Soil temperature: use the sensor installed on dt80 and dt85 to measure the soil temperature of 1cm, 5cm, 10cm, 20cm, and 1cm, 3cm, 5cm, 10cm, 15cm, which is measured by the sensor connected to dt80 Soil moisture: use h-probe sensor to measure 0-5cm soil moisture, the probe can measure 0-5cm soil temperature at the same time 3. Data size: 16.7M 4. Data format:. Xls

2020-03-13

HiWATER: Dataset of emissivity of typical terrain over Heihe River Basin (2014.03.25-2015.06.30)

This data set is typical specific emissivity data set of Heihe River Basin. Data observation is from March 25, 2014 to June 30, 2015. Instrument: Portable Fourier transform infrared spectrometer (102f), hand-held infrared thermometer Measurement method: 102f was used to measure the radiation values of cold blackbody, warm blackbody, observation target and gold plate. Using the radiation value of the cold and warm blackbody, the 102f is calibrated to eliminate the influence of the instrument's own emission. By using the iterative inversion algorithm based on smoothness, the specific emissivity and the object temperature are inversed. The specific emissivity range is 8-14 μ m, and the resolution is 4cm-1. This data set contains the original radiation curves (in ASCII format) and recording files of cold blackbody, warm blackbody, measured target and gold plate obtained by 102f.

2020-03-13

Heihe 1km monthly LAI production (2012)

Water scarcity,food crises and ecological deterioration caused by drought disasters are a direct threat to food security and socio-economic development. Improvement of drought disaster risk assessment and emergency management is now urgently required. This article describes major scientific and technological progress in the field of drought disaster risk assessment. Drought is a worldwide natural disaster that has long affected agricultural production as well as social and economic activities. Frequent droughts have been observed in the Belt and Road area, in which much of the agricultural land is concentrated in fragile ecological environment. Soil relative humidity index is one of the indicators to characterize soil drought and can directly reflect the status of crops' available water.

2020-03-10

Monthly FAPAR production at 1 KM in Heihe Rivers Basin (2012)

Firstly, the canopy reflectance is expressed as a function of a series of parameters, such as Lai / fAPAR, wavelength, soil and leaf reflectance, aggregation index, incidence and observation angle. For several key parameters, the parameter table is established as the input of inversion. Then input the surface reflectance data and land cover data after preprocessing, and use the LUT method to retrieve the fAPAR products. See the reference for detailed algorithm. Image format: TIF Image size: about 1m per scene Time frame: 2012 Time resolution: month by month Spatial resolution: 1km

2020-03-10