In 2007 and 2008, Landsat data set 49 scenes, covering the entire black river basin. The acquisition time is:2007-08-12, 2007-09-23, 2008-01-05, 2008-02-06, 2008-03-17, 2008-03-25, 2008-05-10, 2008-05-19, 2008-05-28, 2008-06-04, 2008-07-07, 2008-07-15, 2008-07-22, 2008-07-23, 2008-08-16, 2008-08-30,2008-09-08, 2008-09-15, 2008-09-17, 2008-10-01, 2008-10-10, 2008-10-19, 2008-10-26, 2008-11-02, 2008-11-04, 2008-11-18, 2008-11-20, 2008-11-27, 2008-12-06, 2008-12-13, 2008-12-14. The product is class L1 and has been geometrically corrected.It includes 4 scenes of TM image and 45 scenes of ETM+ image. The Landsat satellite remote sensing data set of heihe integrated remote sensing joint experiment was obtained through free download.
2020-06-08
ASAR (Advanced Synthetic Aperture Radar) is a Synthetic Aperture Radar sensor mounted on ENVISAT satellite. It operates in c-band with a wavelength of 5.6 cm and features multi-polarization, variable observation Angle and wide-range imaging. Heihe river basin of ENVISAT ASAR remote sensing data sets mainly through central Europe "dragon plan" project, the data to the Image mode, cross polarization (Alternating Polarisation) model with wide is given priority to, the spatial resolution of 30 meters. ENVISAT ASAR data 404 scenes are currently available in heihe river basin, including 82 scenes in APP mode, 7 scenes in IMP mode and 315 scenes in WSM mode. The acquisition time is: APP can choose the polarization mode, the time range is from 2007-08-15 to 2007-12-23, 2008-01-02 to 2008-12-20, 2009-02-15 to 2009-09-06; IMP imaging mode, time range from 2009-06-19 to 2009-07-12; WSM wide format, time range from 2005-12-05 to 2005-12-31,2006-01-06 to 2006-12-31, 2007-01-01 to 2007-12-30, 2008-01-01 to 2008-12-28, 2009-03-13 to 2009-05-22. Product level is L1B, without geometric correction, is amplitude data.
2020-06-08
This data set is the multispectral data used to retrieve 30 meter Lai and fAPAR products in 2012. It is obtained by the environmental satellite CCD sensor with a resolution of 30 m and four bands. This data set has been geometric corrected, radiometric corrected and converted into reflectivity image.
2020-06-05
This dataset includes five scenes, covering the artificial oasis eco-hydrology experimental area of the Heihe River Basin, which were acquired on (yy-mm-dd) 2012-04-05, 2012-04-21, 2012-05-07, 2012-06-24, 2012-07-10. The data were all acquired around 11:50 (BJT) with data product of Level 2. Landsat ETM+ dataset was downloaded from http://glovis.usgs.gov/.
2020-05-28
This dataset includes one scene acquired on (yy-mm-dd hh:mm, BJT) 2012-07-06 06:30, covering the artificial oasis eco-hydrology experimental area of the Heihe River Basin. This datum was acquired at Stripmap-Quad mode with product level of SLC, and this image includes VV, VH, HH and HV polarization with a spatial resolution of 8 m. Radarsat-2 dataset was acquired from the Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences (Courtesy: Dr. Chen Quan).
2020-05-28
The “Eco-Hydro Integrated Atlas of Heihe River Basin” is supported by the Synthetic Research on the Eco-hydrological Process of the Heihe River Basin– a key project to provide data collation and service for the Heihe River Basin eco-hydrological process integration study. This atlas will provide researchers with a comprehensive and detailed introduction to the Heihe River Basin background and basic data sets. The 1:100,000 topographic framing index of the Heihe River Basin is one of the basic geographs of the atlas, with a scale of 1:2500000, Lambert conformal conic projection, and a standard latitude: north latitude 25 47 . Data source: 1:100000 topographic map index data, Heihe River boundary.
2020-03-31
The proportion data set of daily cloudless MODIS snow cover area in babaohe river basin (2008.1.1-2014.6.1) was obtained after cloud removal processing using a cloud removal algorithm based on cubic spline function interpolation on the basis of daily cloudless MODIS snow cover product-mod10a1 (tang zhiguang, 2013). This data set adopts the projection method of UTM (horizontal axis isometric cutting cylinder), with a spatial resolution of 500m, and provides Daily Snow Albedo daily-sad results for the babao river basin.The data set is a daily file from January 1, 2008 to June 1, 2014.Each file is the snow albedo result of the day, with a value of 0-100 (%), is the ENVI standard file, and the naming rule is: mod10a1.ayyyyddd_h25v05_snow_sad_grid_2d_reproj_babaohe_nocloud.img, where YYYY represents the year, DDD stands for Julian day (001-365/366).The file can be opened directly with ENVI or ARCMAP software. The original MODIS snow cover data products processed by declouding are derived from MOD10A1 products processed by the us national snow and ice data center (NSIDC). This data set is in HDF format and USES sinusoidal projection. The attributes of the cloud-free MODIS albedo data set (2008.1.1-2014.1.1) in babaohe river basin are composed of the spatial and temporal resolution, projection information and data format of the dataset.
2020-03-29
On August 2, 2012, airborne ground synchronous observation was carried out in plmr quadrats of Yingke oasis and huazhaizi desert. Plmr (polarimetric L-band multibeam radiometer) is a dual polarized (H / V) L-band microwave radiometer, with a center frequency of 1.413 GHz, a bandwidth of 24 MHz, a resolution of 1 km (relative altitude of 3 km), six beam simultaneous observations, an incidence angle of ± 7 °, ± 21.5 °, ± 38.5 °, and a sensitivity of < 1K. The flight mainly covers the middle reaches of the artificial oasis eco hydrological experimental area. The local synchronous data set can provide the basic ground data set for the development and verification of passive microwave remote sensing soil moisture inversion algorithm. Quadrat and sampling strategy: The observation area is located in the transition zone between the southern edge of Zhangye Oasis and anyangtan desert, on the west side of Zhangye Daman highway, and across the trunk canal of Longqu in the north and the south, which is divided into two parts. In the southwest, there is a 1 km × 1 km desert quadrat. Because the desert is relatively homogeneous, here 1 The soil moisture of 5 points (1 point and center point around each side, and several more points can be measured during walking along the road in the actual measurement process) is collected in KM quadrat. The four corner points are 600 m apart from each other except the diagonal direction. The southwest corner point is huazhaizi desert station, which is convenient to compare with the data of meteorological station. On the northeast side, a large sample with an area of 1.6km × 1.6km was selected to carry out synchronous observation on the underlying surface of oasis. The selection of quadrat is mainly based on the consideration of the representativeness of surface coverage, avoiding residential buildings and greenhouses as much as possible, crossing oasis farmland and some deserts in the south, accessibility, and observation (road consumption) time, so as to obtain the comparison of brightness and temperature with plmr observation. Considering the resolution of plmr observation, 11 splines (east-west distribution) were collected at the interval of 160 m in the east-west direction. Each line has 21 points (north-south direction) at the interval of 80 M. four hydraprobe data acquisition systems (HDAS, reference 2) were used for simultaneous measurement. Measurement content: About 230 points on the quadrat were obtained, each point was observed twice, that is to say, two times were observed at each sampling point, one time was inside the film (marked as a in the data record) and one time was outside the film (marked as B in the data record). As the HDAS system uses pogo portable soil sensor, the soil temperature, soil moisture (volume moisture content), loss tangent, soil conductivity, real part and virtual part of soil complex dielectric are observed. No synchronous vegetation sampling was carried out on that day. Data: This data set consists of two parts: soil moisture observation and vegetation observation. The former saves data in vector file format, and the spatial location is the location of each sampling point (WGS84 + UTM 47N). Soil moisture and other measurement information are recorded in attribute file.
2020-03-14
On July 3, 2012, airborne ground synchronous observation was carried out in plmr sample belt near Linze station. Plmr (polarimetric L-band multibeam radiometer) is a dual polarized (H / V) L-band microwave radiometer, with a center frequency of 1.413 GHz, a bandwidth of 24 MHz, a resolution of 1 km (relative altitude of 3 km), six beam simultaneous observations, an incidence angle of ± 7 °, ± 21.5 °, ± 38.5 °, and a sensitivity of < 1K. The local synchronous data set can provide the basic ground data set for the development and verification of passive microwave remote sensing soil moisture inversion algorithm. Quadrat and sampling strategy: According to the typical ground surface type represented by three points near Linze station and taking part of neutron tube observation into account, the three routes from northwest to southeast are designed, with an interval of 200 m, a design altitude of about 300 m and a plmr ground resolution of 100 m. According to the observation characteristics of the route and plmr, three observation transects are designed on both sides of the route, each of which is about 6 km long. From west to East are L1, L2 and L3 respectively. Among them, L1 and L2 are centered on the middle route, 80 m apart; L2 and L3 are 200 m apart. Four hydroprobe data acquisition systems (HDAS, ref. 2) were used to measure at the same time. Measurement content: About 4500 points on the sample belt were obtained, each point was observed twice, that is to say, in each sampling point, once in the film (marked as a in the data record) and once out of the film (marked as B in the data record). As the HDAS system uses pogo portable soil sensor, the soil temperature, soil moisture (volume moisture content), loss tangent, soil conductivity, real part and virtual part of soil complex dielectric are observed. Vegetation parameter observation was carried out in some representative soil water sampling points, and the measurement of plant height and biomass (vegetation water content) was completed. Note: the observation date coincides with the irrigation of large area of farmland in this area, which makes it difficult for the observer to move forward, the field block is difficult to enter, and the observation point position deviates from the preset point position. Data: This data set includes two parts: soil moisture observation and vegetation observation. The former saves the data format as a vector file, the spatial location is the location of each sampling point (WGS84 + UTM 47N), and the measurement information of soil moisture is recorded in the attribute file; the vegetation sampling information is recorded in the excel table.
2020-03-14
During lidar and widas flight in summer 2012, the ground synchronously carried out the continuous observation of differential GPS of ground base station, and obtained the synchronous GPS static observation data, which is used to support the synchronous solution of aviation flight data. Measuring instrument: Two sets of triple R8 GNSS system. Zgp8001 sets Time and place of measurement: On July 19, 2012, EC matrix lidar flew and observed at mjwxb (northwest of Maojiawan) and sbmz (shibamin) two base stations at the same time On July 25, 2012, lidar of hulugou small watershed and tianmuchi small watershed in the upper reaches flew, observed in XT Xiatang, lidar of Zhangye City calibration field in the middle reaches, and observed in mjwxb (northwest of Maojiawan) On July 26, 2012, lidar flight of hulugou small watershed and tianmuchi small watershed in the upper reaches was observed in XT Xiatang, lidar flight of Zhangye City calibration field in the middle reaches was observed in HCZ (railway station) On August 1, 2012, the upper east and West branches of widas flew and observed in yng (yeniugou) On August 2, 2012, the midstream EC matrix test area widas flew and observed in HCZ (railway station) On August 3, 2012, the midstream EC matrix test area widas flew and observed in mjwxb (northwest Maojiawan) Data format: Original data format before differential preprocessing.
2020-03-14
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn