Current Browsing: Remote Sensing Data


HiWATER: Land surface temperature product in the middle reaches of the Heihe River Basin (10th, July, 2012)

On 10 July 2012 (UTC+8), TASI sensor carried by the Harbin Y-12 aircraft was used in a visible near Infrared hyperspectral airborne remote sensing experiment, which is located in the observation experimental area (30×30 km). The relative flight altitude is 2500 meters. Land surface temperature product was obtained at a resolution of 3 m using a modified temperature/emissivity separation algorithm based on TASI surface radiance data. The product were validated with in situ ground measurements. The validation results indicated that the Land surface temperature product agreed with the ground LSTs well with RMSE lower than 1.5 K.

2019-09-13

HiWATER: Thermal-Infrared yyperspectral radiometer(Jul. 4, 2012)

On 4 July 2012 (UTC+8), a TASI sensor boarded on the Y-12 aircraft was used to obtain the thermal-infrared hyperspectral image, which is located in the observation experimental area, Linze region and Heihe riverway. The relative flight altitude is 1000 meters. The wavelength of TASI is 8-11.5 μm with a spatial resolution of 3 meters. Through the ground sample points and atmospheric data, the data are recorded in surface radiance processed by geometric correction and atmospheric correction. Land surface temperature (LST) data was retrieved by temperature/emissivity separation algorithm.

2019-09-13

HiWATER: visible and near-infrared hyperspectral radiometer(Jun. 29, 2012)

On 29 June 2012 (UTC+8), a CASI/SASI sensor carried by the Harbin Y-12 aircraft was used in a visible near Infrared hyperspectral airborne remote sensing experiment, which is located in the observation experimental area (30×30 km). The relative flight altitude is 3500 meters(an elevation of 3500 meters), The wavelength of CASI and SASI is 380-1050 nm and 950-2450 nm, respectively. The spatial resolution of CASI and SASI is 1 m and 2.4 m, respectively. Through the ground sample points and atmospheric data, the data are recorded in reflectance processed by geometric correction and atmospheric correction based on 6S model.

2019-09-13

HiWATER: the albedo in the middle reaches of the Heihe River Basin (Jun. 29, 2012)

The albedo product was obtained based on the visible and near-infrared hyperspectral radiometer (29 June, 2012) which covered the artificial oasis eco-hydrology experimental area (5.5 km*5.5 km)with a 5 m spatial resolution.

2019-09-13

HiWATER: CCD reference image in core experimental area of flux observation matrix in the midstream of the Heihe River Basin

This dataset includes two reference images. The first one is before the calibration and validation experiment and the second one is during the calibration and validation experiment. The first image was shoot and mosaicked by CCD camera on 8 November, 2011. It was mainly used to design the experiment in the middle stream. The spatial resolution is 0.3 m for raw image and 0.5 m for the mosaicked image. The second reference image is CASI image shoot on 29 June, 2012. This image is mainly used to crop structure mapping in the experiment area. The spatial resolution is 0.3 m for raw image and 0.5 m for the mosaicked image. Data format:GeoTIFF Projection:The 2000 national geodetic coordinate system

2019-09-12

HiWATER: Airborne LiDAR-DEM data production in the Shenshawo desert area of the Heihe River Basin

On 19 August 2012, a Leica ALS70 airborne laser scanner boarded on the Y-12 aircraft was used to obtain the Lidar point cloud data. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 2900 m with the point cloud density 1 point per square meter. Aerial LiDAR-DEM was obtained through parameter calibration, automatic classification of point cloud density and manual editing.

2019-09-12

HiWATER: Simultaneous observation dataset of river surface temperature in the middle reaches of the Heihe River Basin on Jul. 3 and Jul. 4, 2012

The aim of the simultaneous observation of river surface temperature is obtaining the river surface temperature of different places, while the sensor of thermal infrared go into the experimental areas of artificial oases eco-hydrology on the middle stream. All the river surface temperature data will be used for validation of the retrieved river surface temperature from thermal infrared sensor and the analysis of the scale effect of the river surface temperature, and finally serve for the validation of the plausibility checks of the surface temperature product from remote sensing. 1. Observation sites and other details Ten river sections were chosen to observe surface temperature simultaneously in the midstream of Heihe River Basin on 3 July and 4 July, 2012, including Sunan Bridge, Binhe new area, Heihe Bridge, Railway Bridge, Wujiang Bridge, Gaoya Hydrologic Station, Banqiao, Pingchuan Bridge, Yi’s Village, Liu’s Bridge. Self-recording point thermometers (observed once every 6 seconds) were used in Railway Bridge and Gaoya Hydrologic Station while handheld infrared thermometers (observed once of the river section temperature for every 15 minutes) were used in other eight places. 2. Instrument parameters and calibration The field of view of the self-recording point thermometer and the handheld infrared thermometer are 10 and 1 degree, respectively. The emissivity of the latter was assumed to be 0.95. All instruments were calibrated on 6 July, 2012 using black body during observation. 3. Data storage All the observation data were stored in excel.

2019-09-12

HiWATER: Airborne LiDAR raw data in Tianlaochi catchment

On 25 July 2012, Leica ALS70 airborne laser scanner carried by the Harbin Y-12 aircraft was used in a LiDAR airborne optical remote sensing experiment. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second ,third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 4800 m with the point cloud density 1 points per square meter. Airborne LiDAR-DEM and DSM data production were obtained through parameter calibration, automatic classification of point cloud density and manual editing.

2019-09-12

WATER: Dataset of airborne microwave radiometers (K&Ka bands) mission in the Binggou watershed flight zone on Mar. 30, 2008

The dataset of airborne microwave radiometers (K&Ka) mission was obtained in the Binggou watershed flight zone on Mar. 30, 2008. The frequency of K bands was 18.7 GHz at the nadir view angle without polarization; and the frequency of Ka band was 36.0 GHz with the scanning angle range ±12°. The plane took off at Zhangye airport at 12:43 (BJT) and landed at 15:44, along the scheduled 11 lines at the altitude about 5000m and speed about 220-250km/hr. The raw data include microwave radiometer (L&K) data and GPS data; K band was instantaneous non-imaging observation recorded in text, which will be converted into brightness temperatures according to the calibration coefficients (filed with raw data together) and Ka band was recorded hex text, and the latter are aircraft longitude, latitude and attitude. Moreover, based on the respective real-time clock log, observations by the microwave radiometer and GPS can be integrated to offer coordinates matching for the former. Yaw, flip, and pitch motions of aircraft were ignored due to the low resolution of microwave radiometer observations. Observation information can also be rasterized, as required, after calibration and coordinates matching. K band resolution (x) and footprint can be approximately estimated as x=0.3H (H is relative flight height); for Ka the resolution was 39m.

2019-09-12

HiWATER: Wide-angle infrared dual-mode line/area array scanner, WIDAS(2th, August, 2012)

On 2 August 2012 (UTC+8), a Wide-angle Infrared Dual-mode line/area Array Scanner (WIDAS) carried by the Harbin Y-12 aircraft was used in a visible near Infrared thermal Dual-mode airborne remote sensing experiment, which is located in the artificial oasis eco-hydrology experimental area (30×30 km). WIDAS includes an CCD cameras with spatial resolution 0.26 m, a visible near Infrared multispectral camera with five bands scanner (an maximum observation angle 48° and spatial resolution 1.3 m), and a thermal image camera with spatial resolution 6.3 m. The CCD camera data production are recorded in DN values processed by mosaic and orthorectification. The mutispectral camera data production are recorded in reflectance processed by atmospheric and geometric correction. Thermal image camera data production are recorded in radiation brightness temperature processed by atmospheric and geometric correction.

2019-09-12