This dataset includes two reference images. The first one is before the calibration and validation experiment and the second one is during the calibration and validation experiment. The first image was shoot and mosaicked by CCD camera on 8 November, 2011. It was mainly used to design the experiment in the middle stream. The spatial resolution is 0.3 m for raw image and 0.5 m for the mosaicked image. The second reference image is CASI image shoot on 29 June, 2012. This image is mainly used to crop structure mapping in the experiment area. The spatial resolution is 0.3 m for raw image and 0.5 m for the mosaicked image. Data format:GeoTIFF Projection:The 2000 national geodetic coordinate system
2019-09-12
On 19 August 2012, a Leica ALS70 airborne laser scanner boarded on the Y-12 aircraft was used to obtain the Lidar point cloud data. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 2900 m with the point cloud density 1 point per square meter. Aerial LiDAR-DEM was obtained through parameter calibration, automatic classification of point cloud density and manual editing.
2019-09-12
The aim of the simultaneous observation of river surface temperature is obtaining the river surface temperature of different places, while the sensor of thermal infrared go into the experimental areas of artificial oases eco-hydrology on the middle stream. All the river surface temperature data will be used for validation of the retrieved river surface temperature from thermal infrared sensor and the analysis of the scale effect of the river surface temperature, and finally serve for the validation of the plausibility checks of the surface temperature product from remote sensing. 1. Observation sites and other details Ten river sections were chosen to observe surface temperature simultaneously in the midstream of Heihe River Basin on 3 July and 4 July, 2012, including Sunan Bridge, Binhe new area, Heihe Bridge, Railway Bridge, Wujiang Bridge, Gaoya Hydrologic Station, Banqiao, Pingchuan Bridge, Yi’s Village, Liu’s Bridge. Self-recording point thermometers (observed once every 6 seconds) were used in Railway Bridge and Gaoya Hydrologic Station while handheld infrared thermometers (observed once of the river section temperature for every 15 minutes) were used in other eight places. 2. Instrument parameters and calibration The field of view of the self-recording point thermometer and the handheld infrared thermometer are 10 and 1 degree, respectively. The emissivity of the latter was assumed to be 0.95. All instruments were calibrated on 6 July, 2012 using black body during observation. 3. Data storage All the observation data were stored in excel.
2019-09-12
On 25 July 2012, Leica ALS70 airborne laser scanner carried by the Harbin Y-12 aircraft was used in a LiDAR airborne optical remote sensing experiment. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second ,third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 4800 m with the point cloud density 1 points per square meter. Airborne LiDAR-DEM and DSM data production were obtained through parameter calibration, automatic classification of point cloud density and manual editing.
2019-09-12
The dataset of airborne microwave radiometers (K&Ka) mission was obtained in the Binggou watershed flight zone on Mar. 30, 2008. The frequency of K bands was 18.7 GHz at the nadir view angle without polarization; and the frequency of Ka band was 36.0 GHz with the scanning angle range ±12°. The plane took off at Zhangye airport at 12:43 (BJT) and landed at 15:44, along the scheduled 11 lines at the altitude about 5000m and speed about 220-250km/hr. The raw data include microwave radiometer (L&K) data and GPS data; K band was instantaneous non-imaging observation recorded in text, which will be converted into brightness temperatures according to the calibration coefficients (filed with raw data together) and Ka band was recorded hex text, and the latter are aircraft longitude, latitude and attitude. Moreover, based on the respective real-time clock log, observations by the microwave radiometer and GPS can be integrated to offer coordinates matching for the former. Yaw, flip, and pitch motions of aircraft were ignored due to the low resolution of microwave radiometer observations. Observation information can also be rasterized, as required, after calibration and coordinates matching. K band resolution (x) and footprint can be approximately estimated as x=0.3H (H is relative flight height); for Ka the resolution was 39m.
2019-09-12
On 2 August 2012 (UTC+8), a Wide-angle Infrared Dual-mode line/area Array Scanner (WIDAS) carried by the Harbin Y-12 aircraft was used in a visible near Infrared thermal Dual-mode airborne remote sensing experiment, which is located in the artificial oasis eco-hydrology experimental area (30×30 km). WIDAS includes an CCD cameras with spatial resolution 0.26 m, a visible near Infrared multispectral camera with five bands scanner (an maximum observation angle 48° and spatial resolution 1.3 m), and a thermal image camera with spatial resolution 6.3 m. The CCD camera data production are recorded in DN values processed by mosaic and orthorectification. The mutispectral camera data production are recorded in reflectance processed by atmospheric and geometric correction. Thermal image camera data production are recorded in radiation brightness temperature processed by atmospheric and geometric correction.
2019-09-12
The dataset of airborne Polarimetric L-band Multibeam Radiometers (PLMR) was acquired on 7 July, 2012, located in the middle reaches of the Heihe River Basin. The aircraft took off at 13:40 pm (UTC+8) from Zhangye airport and landed at 17:40 pm, with the flight time of 4 hours. The flight was performed in the altitude of about 2000 m and at the speed of about 220-250 km during the observation, corresponding to an expected ground resolution of about 600 m. The PLMR instrument flown on a small aircraft operates at 1.413 GHz (L-band), with both H- and V-polarizations at incidence angles of ±7.5°, ±21.5° and ±38.5°. PLMR ‘warm’ and ‘cold’ calibrations were performed before and after each flight. The processed PLMR data include 2 DAT files (v-pol and h-pol separately) and 1 KMZ file for each flying day. The DAT file contains all the TB values together with their corresponding beam ID, incidence angle, location, time stamp (in UTC) and other flight attitude information as per headings. The KMZ file shows the gridded 1-km TB values corrected to 38.5 degrees together with flight lines. Cautions should be taken when using these data, as the RFI contaminations are often higher than expected at v-polarization.
2019-09-12
The dataset of ground truth measurements synchronizing with Landsat TM was obtained in the Linze grassland and Linze station foci experimental area on Sep. 23, 2007 during the pre-observation periods, and one scene was captured well. These data can provide reliable ground data for retrieval and validation of land surface temperatures with EO-1 Hyperion remote sensing approaches. Observation items included: (1) the land surface radiative temperature by the hand-held infrared thermometer, which was calibrated; (2) GPS by GARMIN GPS 76; (3) atmospheric parameters at Daman Water Management office measured by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. These data include the raw data in .k7 format and can be opened by ASTPWin software. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel contain optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (4) ground-based land surface temperature measurements by the thermal imager in the Heihe gobi, west of Zhangye city.
2019-09-12
On 3 August 2012, Wide-angle Infrared Dual-mode line/area Array Scanner (WIDAS) carried by the Harbin Y-12 aircraft was used in a visible near Infrared thermal Dual-mode airborne remote sensing experiment, which is located in the artificial oasis eco-hydrology experimental area (5×5 km). WIDAS includes a CCD camera with a spatial resolution of 0.08 m, a visible near Infrared multispectral camera with five bands scanner (an maximum observation angle 48° and spatial resolution 0.4 m), and a thermal image camera with a spatial resolution of 2 m. The CCD camera data are recorded in DN values processed by mosaic and orthorectification.
2019-09-12
BJ-1 dataset includes 11 scenes, covering the upper and middle reaches of the Heihe river basin, which were acquired on 10-21-2007, 11-19-2007, 01-09-2008, 03-03-2008, 04-04-2008, 04-16-2008, 05-01-2008, 05-16-2008, 07-01-2008, 07-06-2008 and 07-08-2008. The sensor was MSI, substar resolution was 32m, fov was 22.06°, the orbit was 686km high and the dip angle was 98.1725°, the focal distance was 150mm, CCD pixel was 7μm, the near infrared band was 760nm-900nm, red wave band was 630nm-690nm and green wave band was 520nm-620nm. The data version is Level 2, which was released after geometric correction. BJ-1 dataset was acquired from "Dragon Programme" (grant number: 5322).
2019-09-12
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn