The dataset of airborne Polarimetric L-band Multibeam Radiometers (PLMR) was acquired on 7 July, 2012, located in the middle reaches of the Heihe River Basin. The aircraft took off at 13:40 pm (UTC+8) from Zhangye airport and landed at 17:40 pm, with the flight time of 4 hours. The flight was performed in the altitude of about 2000 m and at the speed of about 220-250 km during the observation, corresponding to an expected ground resolution of about 600 m. The PLMR instrument flown on a small aircraft operates at 1.413 GHz (L-band), with both H- and V-polarizations at incidence angles of ±7.5°, ±21.5° and ±38.5°. PLMR ‘warm’ and ‘cold’ calibrations were performed before and after each flight. The processed PLMR data include 2 DAT files (v-pol and h-pol separately) and 1 KMZ file for each flying day. The DAT file contains all the TB values together with their corresponding beam ID, incidence angle, location, time stamp (in UTC) and other flight attitude information as per headings. The KMZ file shows the gridded 1-km TB values corrected to 38.5 degrees together with flight lines. Cautions should be taken when using these data, as the RFI contaminations are often higher than expected at v-polarization.
2019-09-12
The dataset of ground truth measurements synchronizing with Landsat TM was obtained in the Linze grassland and Linze station foci experimental area on Sep. 23, 2007 during the pre-observation periods, and one scene was captured well. These data can provide reliable ground data for retrieval and validation of land surface temperatures with EO-1 Hyperion remote sensing approaches. Observation items included: (1) the land surface radiative temperature by the hand-held infrared thermometer, which was calibrated; (2) GPS by GARMIN GPS 76; (3) atmospheric parameters at Daman Water Management office measured by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. These data include the raw data in .k7 format and can be opened by ASTPWin software. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel contain optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (4) ground-based land surface temperature measurements by the thermal imager in the Heihe gobi, west of Zhangye city.
2019-09-12
On 3 August 2012, Wide-angle Infrared Dual-mode line/area Array Scanner (WIDAS) carried by the Harbin Y-12 aircraft was used in a visible near Infrared thermal Dual-mode airborne remote sensing experiment, which is located in the artificial oasis eco-hydrology experimental area (5×5 km). WIDAS includes a CCD camera with a spatial resolution of 0.08 m, a visible near Infrared multispectral camera with five bands scanner (an maximum observation angle 48° and spatial resolution 0.4 m), and a thermal image camera with a spatial resolution of 2 m. The CCD camera data are recorded in DN values processed by mosaic and orthorectification.
2019-09-12
BJ-1 dataset includes 11 scenes, covering the upper and middle reaches of the Heihe river basin, which were acquired on 10-21-2007, 11-19-2007, 01-09-2008, 03-03-2008, 04-04-2008, 04-16-2008, 05-01-2008, 05-16-2008, 07-01-2008, 07-06-2008 and 07-08-2008. The sensor was MSI, substar resolution was 32m, fov was 22.06°, the orbit was 686km high and the dip angle was 98.1725°, the focal distance was 150mm, CCD pixel was 7μm, the near infrared band was 760nm-900nm, red wave band was 630nm-690nm and green wave band was 520nm-620nm. The data version is Level 2, which was released after geometric correction. BJ-1 dataset was acquired from "Dragon Programme" (grant number: 5322).
2019-09-12
The dataset of airborne Polarimetric L-band Multibeam Radiometers (PLMR) was acquired on 2 August, 2012, located in the middle reaches of the Heihe River Basin. The aircraft took off at 9:00 am (UTC+8) from Zhangye airport and landed at 14:00 pm, with the flight time of 5 hours. The flight was performed in the altitude of about 2300 m and at the speed of about 220-250 km during the observation, corresponding to an expected ground resolution of about 700 m. The PLMR instrument flown on a small aircraft operates at 1.413 GHz (L-band), with both H- and V-polarizations at incidence angles of ±7.5°, ±21.5° and ±38.5°. PLMR ‘warm’ and ‘cold’ calibrations were performed before and after each flight. The processed PLMR data include 2 DAT files (v-pol and h-pol separately) and 1 KMZ file for each flying day. The DAT file contains all the TB values together with their corresponding beam ID, incidence angle, location, time stamp (in UTC) and other flight attitude information as per headings. The KMZ file shows the gridded 1-km TB values corrected to 38.5 degrees together with flight lines. Cautions should be taken when using these data, as the RFI contaminations are often higher than expected at v-polarization.
2019-09-12
The object of this dataset is to support the atmospheric correction data for the satellite and airborne remote-sensing. It provides the atmospheric aerosol and the column content of water vapor. The dataset is sectioned into two parts: the conventional observations data and the observations data synchronized with the airborne experiments. The instrument was on the roof of the 7# in the Wuxing Jiayuan community from 1 to 24 in June. After 25 June, it was moved to the ditch in the south of the Supperstaiton 15. The dataset provide the raw observations data and the retrieval data which contains the atmosphere aerosol optical depth (AOD) of the wavebands at the center of 1640 nm, 1020 nm, 936 nm, 870 nm, 670 nm, 500 nm, 440 nm, 380 nm and 340 nm, respectively, and the water vapor content is retrieved from the band data with a centroid wavelength of 936 nm. The continuous data was obtained from the 1 June to 20 September in 2012 with a one minute temporal resolution. The time used in this dataset is in UTC+8 Time. Instrument: The sun photometer is employed to measure the character of atmosphere. In HiWATER, the CE318-NE was used.
2019-09-12
The aim of the simultaneous observation of land surface temperature is obtaining the land surface temperature of different kinds of underlying surface, including greenhouse film, the roof, road, ditch, concrete floor and so on, while the sensor of thermal infrared go into the experimental areas of artificial oases eco-hydrology on the middle stream. All the land surface temperature data will be used for validation of the retrieved land surface temperature from thermal infrared sensor and the analysis of the scale effect of the land surface temperature, and finally serve for the validation of the plausibility checks of the surface temperature product from remote sensing. 1. Observation time and other details On 25 June, 2012, ditch and asphalt road surface temperatures were observed once every five minutes using handheld infrared thermometers recorded. On 26 June, 2012, ditch and asphalt road surface temperatures were observed once every five minutes using handheld infrared thermometers while greenhouse film and concrete floor surface temperatures were observed once every one second using self-recording point thermometer. On 29 June, 2012, concrete floor surface temperatures were observed continuously using handheld infrared thermometers during the sensor of TASI go into the region. At the same time, greenhouse film and concrete floor surface temperatures were observed once every one second using self-recording point thermometer. On 30 June, 2012, asphalt road, ditch, bare soil, melonry and ridge of field surface temperatures were observed continuously using handheld infrared thermometers during the sensor of TASI go into the region. At the same time, greenhouse film and concrete floor surface temperatures were observed once every one second using self-recording point thermometer. On 10 July, 2012, asphalt road, ditch, bare soil, melonry and ridge of field surface temperatures were observed once every one minute using handheld infrared thermometers during the sensor of TASI go into the region. At the same time, concrete floor surface temperatures were observed once every six second using self-recording point thermometer. On 26 July, 2012, asphalt road, concrete floor, bare soil and melonry surface temperatures were observed once every one minute using handheld infrared thermometers during the sensor of WiDAS go into the region. At the same time, greenhouse film and concrete floor surface temperatures were observed once every six second using self-recording point thermometer. On 2 August, 2012, corn field and concrete floor surface temperatures were observed using handheld infrared thermometers. At the same time, greenhouse film and concrete floor surface temperatures were observed once every six second using self-recording point thermometer. For corn field, twelve sites were selected according to the flight strip of the WiDAS sensor, and for each site one plot surface temperatures were recorded continuously during the sensor of WiDAS go into the region. On 3 August, 2012, corn field and concrete floor surface temperatures were observed using handheld infrared thermometers. At the same time, greenhouse film and concrete floor surface temperatures were observed once every six second using self-recording point thermometer. For corn field, fourteen sites were selected according to the flight strip of the WiDAS sensor, and for each site three plots surface temperatures were recorded continuously during the sensor of WiDAS go into the region. 2. Instrument parameters and calibration The field of view of the self-recording point thermometer and the handheld infrared thermometer are 10 and 1 degree, respectively. The emissivity of the latter was assumed to be 0.95. The observation heights of the self-recording point thermometer for the greenhouse film and the concrete floor were 0.5 m and 1 m, respectively. All instruments were calibrated three times (on 6 July, 5 August and 20 September, 2012) using black body during observation. 3. Data storage All the observation data were stored in excel.
2019-09-12
The aim of the simultaneous observation of river surface temperature is obtaining the land surface temperature in different places be of different kinds of underlying surface, while the sensor of WiDAS go into the experimental areas of the upstream of Heihe river basin. All the land surface temperature data will be used for validation of the retrieved land surface temperature from WiDAS sensor and the analysis of the scale effect of the land surface temperature, and finally serve for the validation of the authenticity of the surface temperature product from remote sensing. 1. Observation sites and other details Six places be of different kinds of underlying surface were chosen to observe surface temperature simultaneous in the upstream of Heihe river basin on 1 August. Self-recording point thermometers (observed once every 6 seconds) were used one place while handheld infrared thermometers (observed continuously during the sensor of WiDAS go into the region) were used in other five places. The main underlying surface including natural grassland, river section, river rapids, gravel. 2. Instrument parameters and calibration. The field of view of the self-recording point thermometer and the handheld infrared thermometer are 10 and 1 degree, respectively. The emissivity of the latter was assumed to be 0.95. All instruments were calibrated on 5 August, 2012 using black body during observation. 3. Data storage All the observation data were stored in excel.
2019-09-12
On 19 August 2012 (UTC+8), Leica ALS70 airborne laser scanner carried by the Harbin Y-12 aircraft was used in a LiDAR airborne optical remote sensing experiment. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 2900 m with the point cloud density 1 point per square meter. Airborne LiDAR-DEM and DSM data production were obtained through parameter calibration, automatic classification of point cloud density and manual editing.
2019-09-12
On 2 August 2012, Wide-angle Infrared Dual-mode line/area Array Scanner (WIDAS) carried by the Harbin Y-12 aircraft was used in a visible near Infrared thermal Dual-mode airborne remote sensing experiment, which is located in the artificial oasis eco-hydrology experimental area (30×30 km). WIDAS includes a CCD camera with a spatial resolution of 0.26 m, a visible near Infrared multispectral camera with five bands scanner (an maximum observation angle 48° and spatial resolution 1.3 m), and a thermal image camera with a spatial resolution of 6.3 m. The CCD camera data are recorded in DN values processed by mosaic and orthorectification.
2019-09-12
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn