不同相态降水(降雪、雨夹雪和降雨)对地表水循环和能量收支产生不同性质影响。因此,对不同相态降水进行区分至关重要,特别是在气候变化背景下。基于Ding et al.(2014)提出的不同相态降水分离参数化方案和基于观测的逐日格点数据集(CN05.1),以湿球温度、相对湿度、地表气压和高程数据作为输入,我们生成了一套1961-2016年期间中国区域不同相态降水(降雪、雨夹雪和降雨)及其湿球温度阈值的逐日格点数据集,空间分辨率为0.25°。在此基础上,进一步计算了逐年降雪、雨夹雪和降雨总量。该数据可为冰冻圈科学、水文学、生态学和气候变化相关研究提供基础数据。
苏勃, 赵宏宇
山地冰川是中国西部及其周边地区重要的淡水资源。由于冰川融水在流域尺度为生态和社会经济用水提供补给,因此,确定冰川作用(补给)流域是开展冰川水资源供给功能和服务研究的基础。基于Randolph Glacier Inventory 6.0、中国历次冰川编目、中国三级流域边界数据(中国科学院资源与环境科学数据中心提供)和全球流域边界数据HydroBASINS(www.hydrosheds.org),通过将冰川分布数据与流域边界数据进行相交分析,生成了20世纪50年代至21世纪20年代(至今)(1)中国两级冰川作用流域边界、(2)中国冰川作用的国际河流流域边界以及(3)亚洲高山区冰川作用流域边界数据。该数据兼顾了中国和全球常用流域边界,并将二者很好匹配,以期为中国及其周边地区冰川水资源研究提供基础数据。
苏勃
数据集为中国多情景多模式逐月平均气温数据,空间分辨率为0.0083333°(约1km),时间为2021年1月-2100年12月。数据为NETCDF格式。数据是根据IPCC耦合模式比较计划第六阶段(CMIP6)发布的全球>100 km气候模式数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国地区降尺度生成。数据采用IPCC最新发布的SSP情景(SSP119、SSP245、SSP585),每个情景包含三个GCMs(EC-Earth3、GFDL-ESM4、MRI-ESM2-0)气候数据,数据集包含的地理空间范围是中国主要陆地,不含南海岛礁等区域。单位为0.1℃。文件命名是GCM_SSP_tmp-30s-序号.nc,30s即0.0083333°,序号从1-40,序号1表示2021.1-2022.12,依次表示年份;以EC-Earth3_ssp119_tmp-30s-1.nc文件为例,表示SSP119情景下EC-Earth3气候模的1km分辨率2021.1-2022.12逐月均温数据,含24个图层。欲更深入的理解数据请参阅文献引用方式下的数据作者已发表的论文。
彭守璋
近地表气温是反映气候变化的重要物理参数。为了获得中国地区高时空分辨率的日数据(Tmax、Tmin和Tavg),我们充分分析了各种现有数据(再分析数据、遥感数据和原位数据)的优缺点。针对不同的天气条件建立了不同的Ta重建模型,并通过建立不同区域的修正方程进一步提高数据精度。最后,获得了1979 - 2018年中国逐日气温数据集(Tmax、Tmin和Tavg),空间分辨率为0.1°。 对于Tmax,使用原位数据的验证表明,均方根误差(RMSE)范围为0.86°C至1.78°C,平均绝对误差(MAE)范围为0.63°C至1.40°C,皮尔逊系数(R2)范围为0.96至0.99。Tmin的RMSE为0.78°C ~ 2.09°C, MAE为0.58°C ~ 1.61°C, R2为0.95 ~ 0.99。对于Tavg, RMSE范围为0.35°C ~ 1.00°C, MAE范围为0.27°C ~ 0.68°C, R2范围为0.99 ~ 1.00。此外,利用多种评价指标分析Ta的时空变化趋势,Tavg增加幅度大于0.0°C/a,与全球变暖的总体趋势一致。 综上所述,该数据集具有较高的空间分辨率和可靠的精度,弥补了之前在高空间分辨率下缺失的温度值(Tmax、Tmin和Tavg)。该数据集也为研究气候变化,特别是高温干旱和低温冷害提供了关键参数。
方舒, 毛克彪
数据集为中国逐月潜在蒸散发,空间分辨率为0.0083333°(约1km),时间为1990.1-2021.12(将每年更新),单位为0.1mm。该数据集是基于中国1km逐月均温、最低温、最高温数据集(本站已发布,Peng at al. 2019),采用Hargreaves潜在蒸散发计算式得到(Peng at al. 2017)。公式如下: PET = 0.0023 × S0 ×(MaxT − MinT)0.5 ×(MeanT + 17.8), 其中,PET为潜在蒸散发,mm/月;MaxT、MinT、MeanT分别为月最高温、最低温、均温;S0为到达地球大气层顶的理论太阳辐射,根据太阳常数、日地距离、儒略日、赤纬等计算得到。 为便于存储,数据均为int16型存于nc(NETCDF)文件中。nc数据可用ArcMAP软件打开制图,并可用Matlab、R软件提取处理。数据坐标系统建议使用WGS84。
彭守璋
本数据集包含了中国第三极地区(西藏、新疆、云南、青海)的2019年二氧化硫、氮氧化物、PM2.5排放网格化清单。排放清单来源于清华大学王书肖教授课题组排放清单数据库,通过使用ArcGIS软件技术将排放清单处理为1km*1km的网格数据集。排放计算的基础数据基于公开数据搜集、卫星观测数据、文献搜集等方式,以排放因子法进行计算,数据来自于国家统计局数据及其它行业统计年鉴。该数据可用于模型工作者对于第三极区域气候及空气质量的进一步研究。
吴清茹
地表土壤水分(SSM)是了解地球表面水文过程的关键参数。长期以来,被动微波(PM)技术一直是在卫星遥感尺度上估算SSM的主要选择,而另一方面,PM观测的粗分辨率(通常>10 km)阻碍了其在更细尺度上的应用。虽然已经提出了定量研究,以缩小基于卫星PM的SSM的规模,但很少有产品可供公众使用,以满足1km分辨率和全天候条件下每日重访周期的要求。因此,在本研究中,我们在中国开发了一种具有所有这些特征的SSM产品。该产品是通过在36 km处对基于AMSR-E和AMSR-2的SSM进行降尺度生成的,涵盖了2003-2019年间两台辐射计的所有在轨时间。MODIS光学反射率数据和在多云条件下填补空白的每日热红外地表温度(LST)是降尺度模型的主要数据输入,以实现SSM降尺度结果的“全天候”质量。4月至9月期间,这一开发的SSM产品的每日图像在全国范围内实现了准完全覆盖。在其他月份,与最初的每日PM观测值相比,开发产品的全国覆盖率也大大提高。我们根据2000多个专业气象和土壤水分观测站的现场土壤水分测量结果对该产品进行了评估,发现该产品的精度在晴空到多云的所有天气条件下都是稳定的,无偏RMSE的站平均值在0.053 vol到0.056 vol之间。此外,评估结果还表明,开发的产品在1km分辨率下明显优于广为人知的SMAP Sentinel(主被动微波)组合SSM产品。这表明,我们开发的产品在改善未来水文过程、农业、水资源和环境管理相关调查方面可能带来的潜在重要效益。
宋沛林, 张永强
公里级、空间完整(无缝)的地表温度产品在全球变化等领域具有广泛的应用需求。基于遥感观测反演的地表温度具有较高的可信度,融合从热红外和微波观测反演的地表温度,是获取具有一定精度、空间完整地表温度的有效途径。基于这一指导思想,作者发展了反演中国区域1km、无缝地表温度的方法框架,并生成了相应的数据集(2002-2020). 首先采用基于查找表的AMSR-E/AMSR2 地表温度反演算法反演得到AMSR-E/AMSR2 地表温度,之后采用地理加权回归对AMSR-E/AMSR2 地表温度进行降尺度,得到1km 地表温度,最后使用多尺度卡尔曼滤波融合AMSR-E/AMSR2 1km地表温度和MODIS地表温度,生成1km无缝地表温度数据集。 地面验证评价结果表明,该LST的均方根误差(RMSE)约为3K,空间分布于MODIS LST、CLDAS LST的一致性较好。
程洁, 董胜越, 施建成
该数据集记录了全国各地区人均GDP和增长率及排序(2010-2018)的统计数据,数据是按年份进行划分的。数据整理自青海省统计局发布的青海省统计年鉴。数据集包含8个数据表,各数据表结构相同。例如2017-2018年的数据表共有4个字段: 字段1:地 区 字段2:数 量 字段3:位 次 字段4:增长率
青海省统计局
夜间灯光遥感(以下简称夜光)已经成为反映包括社会经济和能源消耗在内的人类活动的一个越来越重要的指标。现有夜光数据集(如美国国防气象卫星计划(DMSP)和国家极地轨道可见光红外成像辐射计(NPP))在时间范围和数据质量上都很有限。因此我们提出了一种夜间灯光卷积长短期记忆(NTLSTM)网络,并将该网络应用于生长出世界上第一套1984 - 2020年中国的人工夜间灯光数据集(PANDA)。模型与原始图像的模型评估显示,平均均方根误差(RMSE)达到0.73,决定系数(R2)达到0.95,像素级的线性斜率为0.99,表明生成产品的数据质量较高。模型结果可以很好地捕捉到新建成区的时间趋势。社会经济指标(建成区面积、国内生产总值、人口)与PANDA的相关性比现有的所有产品都更好,这表明它在寻找不同阶段夜间灯光变化的不同控制方面有更好的潜力。此外,PANDA描绘了不同的城市扩展类型,在代表道路网络方面胜过其他产品,并在早期提供了潜在的夜光景观。
张立贤, 任浙豪, 陈斌, 宫鹏, 付昊桓, 徐冰
本数据集是一个包含34年(1983.7-2017.6)的全国高分辨率地表太阳辐射数据集,其分辨率为10公里,数据单位为W/㎡。该数据集是基于以ISCCP-HXG云产品为主要输入的全球高分辨率(3小时,10公里)地表太阳辐射数据集(1983-2017)上,通过地理加权回归方式,融合全国2261个气象台站日照时数反演的地表太阳辐射站点数据而生成的全国地表太阳辐射分布数据。验证并和其他全球卫星辐射产品比较表明,该数据集在长期趋势模拟上比GEWEX-SRB、CMSAF-CLARA-A2、ISCCP-HXG卫星辐射产品的精度要高。本数据可为陆地表面过程模拟的水文生态学的长期变化应用和研究中提供有利的数据支持。
冯飞, 王开存
对未来气候变化的有效评价,特别是对未来降水量的预测,是制定适应战略的重要依据。本数据是基于RegCM4.6模型,对CanEMS2 (RCP 45和RCP85)、GFDL-ESM2M (RCP2.6、RCP4.5、RCP6.0和RCP8.5)、HadGEM2-ES(RCP2.6、RCP4.5和RCP8.5)、IPSL-CM5A-LR(RCP2.6、RCP4.5、RCP6.0和RCP8.5)、MIROC5(RCP2.6、RCP4.5、RCP6.0和RCP8.5)和NorESM1-M(RCP2.6、RCP4.5、RCP6.0和RCP8.5)等多模型不同碳排放浓度情景下进行区域动力降尺度,获得2007-2099年空间分辨率为0.25度,时间分辨率分别为3小时(部分为6小时)、逐日和逐年的21套中国全境未来气候数据。
潘小多, 张磊
中国地表温度数据集包含2003-2017年期间中国(约960万平方公里土地)的地表温度数据,时间分辨率为月尺度,空间分辨率为5600 m。 数据集主要是通过集成MODIS每日数据(MOD11C1和MYD11C1),月数据(MOD11C3和MYD11C3)和气象站数据,以重建月尺度LST图像云覆盖下的真实LST来生成的,然后构建回归分析模型以进一步提高精度。 六个具有不同气候条件的自然分区。 精度分析表明,重建结果与现场测量结果密切相关,平均RMSE为1.39°C,MAE为1.30°C,R2为0.97。 详情请参考引用文献Zhao et al (2020)。
毛克彪
该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2021.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国地区降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位分别为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。
彭守璋
时空连续的积雪覆盖面积对陆表能量水分交换、山区水文、陆面模式、数值天气预报以及气候变化研究具有重要意义,而云的大量存在,造成光学遥感积雪覆盖面积中严重的数据空缺。本数据集采用Terra和Aqua双星MODIS观测,以及FY-2E和FY-2F VISSR双星观测,获取受云影响较小的积雪覆盖 度(亚像元积雪覆盖),并根据时序信息补充剩余云像元的积雪覆盖度,最终得到无云积雪覆盖度。本数据集包括青藏高原0.005度(约500 m)和中国地区的0.05度(约5 km)空间分辨率逐日积雪覆盖度。
蒋玲梅
该数据为中国逐月平均温度数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2021.12。数据格式为NETCDF,即.nc格式。数据单位为0.1 ℃。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国地区降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。数据坐标系统建议使用WGS84。
彭守璋
数据来源于联合国粮农组织(FAO)和维也纳国际应用系统研究所(IIASA)所构建的世界土壤数据库(Harmonized World Soil Database version 1.1 )(HWSD). 中国境内数据源为第二次全国土地调查南京土壤所所提供的1:100万土壤数据。 该数据可为建模者提供模型输入参数,农业角度可用来研究生态农业分区,粮食安全和气候变化等。数据格式:grid栅格格式,投影为WGS84。采用的土壤分类系统主要为FAO-90。 土壤属性表主要字段包括: SU_SYM90(FAO90土壤分类系统中土壤名称); SU_SYM85(FAO85分类); T_TEXTURE(顶层土壤质地); DRAINAGE(19.5); REF_DEPTH(土壤参考深度); AWC_CLASS(19.5); AWC_CLASS(土壤有效水含量); PHASE1: Real (土壤相位); PHASE2: String (土壤相位); ROOTS: String (到土壤底部存在障碍的深度分类); SWR: String (土壤含水量特征); ADD_PROP: Real (土壤单元中与农业用途有关的特定土壤类型); T_GRAVEL: Real (碎石体积百分比); T_SAND: Real (沙含量); T_SILT: Real (淤泥含量); T_CLAY: Real (粘土含量); T_USDA_TEX: Real (USDA土壤质地分类); T_REF_BULK: Real (土壤容重); T_OC: Real (有机碳含量); T_PH_H2O: Real (酸碱度) T_CEC_CLAY: Real (粘性层土壤的阳离子交换能力); T_CEC_SOIL: Real (土壤的阳离子交换能力) T_BS: Real (基本饱和度); T_TEB: Real (交换性盐基); T_CACO3: Real (碳酸盐或石灰含量) T_CASO4: Real (硫酸盐含量); T_ESP: Real (可交换钠盐); T_ECE: Real (电导率)。 其中以T_开头属性字段表示上层土壤属性(0-30cm),以S_开头属性字段表示下层土壤属性(30-100cm)。 具体属性值代表何意义请参考文件夹下说明文档*.pdf及数据库*.mdb。
Food and Agriculture Organization of the United Nations(FAO), aa
结合Landsat影像(4215景)、地形图,利用半自动水体提取及人工目视检查编辑,完成了过去60多年来(1960s, 1970s, 1990, 1995, 2000, 2005, 2010, 2015, 2020)详细的中国湖泊(大于1平方公里)数量与面积变化研究。从1960s到2020年,中国湖泊总数量(≥ 1 km^2)从2127个增加到2621个,面积从68537 km^2扩张到82302 km^2 。
张国庆
本数据集为基于蒸散发互补方法建立的中国地表蒸散发产品(v1.5),输入数据包括CMFD向下短波辐射、向下长波辐射、气温、气压,以及GLASS地表发射率和反照率、ERA5-land地表温度和空气湿度、NCEP散射辐射率等。本数据集时间跨度为1982年-2017年,空间范围为中国陆地区域。本数据集可为研究长时间尺度水循环和气候变化提供基础。 陆地实际蒸散发 (Ea),单位: mm month-1。 时间分辨率为逐月; 空间分辨率为0.1°; 数据类型:NetCDF; 本数据仅为陆地实际蒸散发,不含水面。
马宁, Jozsef Szilagyi, 张寅生, 刘文彬
数据集包括以下土壤理化性质:pH值、有机质含量、阳离子交换量、根系丰度、总氮(N)、总磷(P)、总钾(K)、碱解氮、速效磷、速效钾、可交换H+、Al3+、Ca2+、Mg2+、K+、Na+、土层厚度、土壤剖面深度、砂、淤泥和C。铺设部分、岩石碎片、体积密度、孔隙、结构、稠度和土壤颜色。提供了质量控制信息(QC)。 分辨率为30弧秒(赤道处约1公里)。土壤性质的垂直变化由8层记录,深度为2.3 m(即0-0.045-0.091、0.091-0.166、0.166-0.289、0.289-0.493、0.493-0.829、0.829-1.383和1.383-2.296 m),以便于在普通土地模型和社区土地模型(CLM)中使用。 数据采用NetCDF格式存储,数据文件名称及其说明如下: 1.THSCH.nc: Saturated water content of FCH 2.PSI_S.nc: Saturated capillary potential of FCH 3.LAMBDA.nc: Pore size distribution index of FCH 4.K_SCH.nc: Saturate hydraulic conductivity of FCH 5.THR.nc: Residual moisture content of FGM 6.THSGM.nc: Saturated water content of FGM 7.ALPHA.nc: The inverse of the air-entry value of FGM 8.N.nc: The shape parameter of FGM 9.L.nc: The pore-connectivity parameter of FGM 10.K_SVG.nc: Saturated hydraulic conductivity of FGM 11.TH33.nc: Water content at -33 kPa of suction pressure, or field capacity 12.TH1500.nc: Water content at -1500 kPa of suction pressure, or permanent wilting point
戴永久, 上官微
DEM是数字高程模型的英文简称(Digital Elevation Model)是流域地形、地物识别的重要原始资料。DEM 的原理是将流域划分为m 行n列的四边形(CELL),计算每个四边形的平均高程,然后以二维矩阵的方式存储高程。由于DEM 数据能够反映一定分辨率的局部地形特征,因此通过DEM 可提取大量的地表形态信息,这些信息包含流域网格单元的坡度、坡向以及单元格之间的关系等。同时根据一定的算法可以确定地表水流路径、河流网络和流域的边界。因此从DEM 提取流域特征,一个良好的流域结构模式是设计算法的前提和关键。 高程数据图是根据中国1:25万等高线和高程点形成的1km数据,包括DEM、山影(hillshade)、坡度(Slope)、坡向(Aspect)图 数据集投影: 两种投影方式 : 正轴割圆锥等面积投影 Albers Conical Equal Area(105、25、47) 大地坐标WGS84坐标系
汤国安
基于第二次全国土壤调查的中国1:1000000比例尺土壤图和8595个土壤剖面图,以及美国农业部(USDA)中国区域土地和气候模拟标准,开发了一个多层土壤粒度分布数据集(砂、粉土和粘土含量)。 采用多边形链接方法,结合土壤剖面和地图多边形之间的距离、剖面的样本大小和土壤分类信息,推导出砂、粉土和粘土的含量分布图。该数据集分辨率为1公里,可用于区域范围内的土地和气候建模。 数据特征 投影:GCS_Krasovsky_1940 覆盖范围:中国 分辨率:0.00833 度(约一公里) 数据格式:FLT, TIFF 取值范围:0%-100% 文件说明 浮点栅格文件包括: sand1.flt, clay1.flt – 表层(0-30cm) 砂粒、粘粒含量。 sand2.flt, clay2.flt – 底层(30-100cm) 砂粒、粘粒含量。 psd.hdr – 头文件: ncols – 列数 nrows – 行数 xllcorner – 左下角纬度 yllcorner – 左下角经度 cellsize – 单元格大小 NODATA_value – 空值 byteorder - LSBFIRST, Least Significant Bit First TIFF 栅格文件包括: sand1.tif, clay1.tif -表层(0-30cm) 砂粒、粘粒含量。 sand2.tif, clay2.tif -底层(30-100cm) 砂粒、粘粒含量。
上官微, 戴永久
植物功能型(PFT)是根据植物种的生态系统功能及其资源利用方式而对宠大的植物种进行的组合,每一种植物功能型共享相似的植物属性,是将植物种的多样性简化为植物功能和结构的多样性。植物功能型的概念受到生态学家特别是生态系统建模者的推崇。其基本假设是全球重要的生态系统动态可以通过有限的植物功能型表达和模拟。目前,植物功能型已被广泛用于生物地理模型、生物地球化学模型、陆面过程模型和全球动态植被模型,如美国国家大气研究中心(NCAR)的陆面过程模型已经将原来用土地覆盖信息变为应用植物功能型图(Bonan et al., 2002)。植物功能型已经被用于动态全球植被模型(DGVM)中,用以预测全球变化情景下生态系统结构与功能的变化。 参考全球植物功能型分类体系,根据模型需求,将土地覆盖类型与植物功能型合并考虑,确定该数据的分类体系下表。 1、植物功能型分类体系 1 Needleleaf evergreen tree, temperate 2 Needleleaf evergreen tree, boreal 3 Needleleaf deciduous tree 4 Broadleaf evergreen tree, tropical 5 Broadleaf evergreen tree, temperate 6 Broadleaf deciduous tree, tropical 7 Broadleaf deciduous tree, temperate 8 Broadleaf deciduous tree, boreal 9 Broadleaf evergreen shrub, temperate 10 Broadleaf deciduous shrub, temperate 11 Broadleaf deciduous shrub, boreal 12 C3 grass, arctic 13 C3 grass 14 C4 grass 15 Crop 16 Permanent wetlands 17 Urban and built-up lands 18 Snow and ice 19 Barren or sparsely vegetated lands 20 Bodies of water 2、制图方法 中国1公里植物功能型图是根据Bonan等(Bonan et al., 2002)提出的土地覆盖与植物功能型转换的气候规则,对MICLCover土地覆盖图(冉有华 等,2009;Ran et al., 2012)进行转换。MICLCover土地覆盖图是融合了2000年中国1:10万土地利用数据、中国植被图集(1:100万)的植物型、中国1:10万冰川分布图、中国1:100万沼泽湿地图和MODIS 2001年土地覆盖产品(MOD12Q1)的最新发布的土地覆盖数据,采用IGBP土地覆盖分类系统。评价显示,其可能是目前存在的全国1km尺度上精度最高的土地覆盖图。气候数据利用何杰等(2010)发展的1981-2008年的空间分辨率为0.1度、时间分辨率为3小时的中国大气驱动数据,是我国现存的在全国尺度上具有最高时空分辨率的气候数据,该数据融合了Princeton 陆面模式驱动数据(Sheffield et al., 2006)、GEWEX-SRB 辐射数据(Pinker et al., 2003)、TRMM 3B42 和APHRODITE 降水数据以及中国气象局740个气象台站的观测数据。根据RanYouhua等(2010)的评价结果,GLC2000在目前的全球土地覆盖数据集中,具有相对较高的精度,且其分类系统中没有混交林这一类,因此MICLCover土地覆盖图中的混交林利用GLC2000 (Bartholome and Belward, 2005; 徐文婷 等,2005)中的信息进行了替换。该数据可用于陆面过程模型等相关研究中。
冉有华, 李新
本数据集在评价已经有土地覆盖数据的基础上,基于证据理论,将2000年中国1:10万土地利用数据、中国植被图集(1:100万)的植被型分类、中国1:10万冰川图、中国1:100万沼泽湿地图和MOD IS 2001年土地覆盖产品(MOD12Q1)进行了融合,最终基于最大信任度原则进行决策,产生了新的、IGBP分类系统的2000年1KM中国土地覆盖数据。 新的土地覆盖数据在保持了中国土地利用数据的总体精度的同时,补充了中国植被图中对植被类型及植被季相的信息,更新了中国湿地图,增加了中国冰川图最新信息,使分类系统更加通用。
冉有华, 李新
中国区域地面气象要素驱动数据集,包括近地面气温、近地面气压、近地面空气比湿、近地面全风速、地面向下短波辐射、地面向下长波辐射、地面降水率共7个要素。数据为NETCDF格式,时间分辨率为3小时,水平空间分辨率为0.1°。可为中国区陆面过程模拟提供驱动数据。 该数据集是以国际上现有的Princeton再分析资料、GLDAS资料、GEWEX-SRB辐射资料,以及TRMM降水资料为背景场,融合了中国气象局常规气象观测数据制作而成。详细过程请参阅参考文献。原始资料来自于气象局观测数据、再分析资料和卫星遥感数据。已去除非物理范围的值,采用ANU-Spline统计插值。精度介于气象局观测数据和卫星遥感数据之间,好于国际上已有再分析数据的精度。
阳坤, 何杰, 唐文君, 卢麾, 秦军, 陈莹莹, 李新
中国土地利用现状遥感监测数据库是在国家科技支撑计划、中国科学院知识创新工程重要方向项目等多项重大科技项目的支持下经过多年的积累而建立的覆盖全国陆地区域的多时相土地利用现状数据库。 数据集包括1980年代末期,1990年、1995年、2000年、2005年、2010年,2015年七期,数据生产制作是以各期Landsat TM/ETM遥感影像为主要数据源,通过人工目视解译生成。数据缺少南海部分岛屿数据。 空间分辨率1公里,投影参数:Albers_Conic_Equal_Area 中央经线105,标准纬线1: 25,标准纬线2: 47。 中国土地利用现状遥感监测数据库是目前我国精度比较高的土地利用遥感监测数据产品,已经在国家土地资源调查、水文、生态研究中发挥着重要作用。 土地利用类型包括耕地、林地、草地、水域、居民地和未利用土地6个一级类型以及25个二级类型。
中国科学院资源环境科学数据中心(http://www.resdc.cn/)
总览我国现有的各种冻土图,他们在分类系统、数据源、制图方法等方面存在较大的不同,这些图件代表了我国在过去的半个世纪中对多年冻土分布的阶段认识。为了更加合理地反映我国冻土的分布,并统计出我国冻土分布面积,我们在分析现有冻土图的基础上,制备了一个新的冻土分布图,该图融合了现有多个冻土图和青藏高原多年冻土分布的模型模拟结果,统一了全国各部分数据的获取时间,反映了2000年左右我国冻土的分布状况。 新的冻土图中,各种冻土类型的分布按以下原则确定: 1. 底图采用中国冻土区划及类型图(1:1000万)(邱国庆 等,2000)。青藏高原以外的高山多年冻土和瞬时冻土的分布沿用原图;季节冻土和瞬时冻土、瞬时冻土和非冻土的界限也均无变化。青藏高原地区的多年冻土和东北地区高纬度多年冻土的分布则采用以下结果更新。 2. 青藏高原区域的高海拔多年冻土和高山多年冻土分布采用南卓铜 等(2002)的模拟结果进行更新。该模型利用青藏公路沿线76个钻孔实测年平均地温数据,进行回归统计分析,获取年平均地温与纬度、高程的关系,并基于该关系,结合GTOPO30高程数据(美国地质调查局地球资源观测与科技中心领导下发展的全球1km数字高程模型数据)模拟得到整个青藏高原范围上的年平均地温分布,再以年平均地温0.5C作为多年冻土与季节冻土的界限。 3. 东北地区的高纬度多年冻土分布采用了Jin et al. (2007)的最新结果。 Jin et al. (2007)通过对过去几十年东北年平均降水和土壤水分的分析,认为东北地区的多年冻土南界与年平均气温的关系在过去几十年中没有发生实质变化。 4. 其他地区的高山多年冻土分布采用中国冰川冻土沙漠图(1:400万)(中国科学院寒区旱区环境与工程研究所,2006)更新。 在分类系统方面,现有的冻土图对多年冻土的划分多采用连续性标准,但对连续性的具体定义有很大不同。很多研究表明,连续性标准是一个与尺度密切相关的概念,并不适合于高海拔多年冻土的分类(程国栋, 1984; Cheng et al., 1992),且该标准无法应用于以网格为基本模拟单元的多年冻土分布模型。在本文中,我们放弃了连续性标准,而以制图单元(网格或区域)内是否存在冻土为标准。新的冻土图将我国冻土分为几下几类: (1)高纬度多年冻土 (2)高海拔多年冻土 (3)高原多年冻土 (4)高山多年冻土 (5)中深季节冻土:可能达到的最大季节冻结深度>1m; (6)浅季节冻土:可能达到的最大季节冻结深度<1m; (7)瞬时冻土:保存时间不足一个月 (8)非冻土。 数据具体说明,请参考说明文档及引用文献。
冉有华, 李新
2008年全国遥感年平均地表温度和冻结指数是冉有华等(2015)基于MODIS Aqua/Terra逐日四次的5公里瞬时地表温度数据产品,发展了新的年平均地表温度和冻结指数估计方法,该方法利用上下午LST观测的平均获取日平均地表温度,方法的核心是如何恢复LST产品的缺失数据,该方法有两个特点:(1)将遥感观测到的日地表温度变幅进行了空间插值,利用插值获取的空间连续的日地表温度变幅,使一天只有一次的卫星观测数据得到应用;(2)利用了一个新的缺失数据时间序列滤波方法,即基于离散余弦变换的惩罚最小二乘回归方法。 验证表明,年平均地表温度与冻结指数的精度只与原始MODIS LST的精度有关,即保持了MODIS LST产品的精度。可用于冻土制图及相关资源环境应用。
冉有华, 李新
中国区域地面气象要素数据集是中国科学院青藏高原研究所开发的一套近地面气象与环境要素再分析数据集。该数据集是以国际上现有的 Princeton 再分析资料、GLDAS 资料、GEWEX-SRB 辐射资料,以及 TRMM 降水资料为背景场,融合了中国气象局常规气象观测数据制作而成。其时间分辨率为 3 小时,水平空间分辨率 0.1°,包含近地面气温、近地面气压、近地面空气比湿、近地面全风速、地面向下短波辐射、地面向下长波辐射、地面降水率,共 7 个要素(变量)。 各变量的物理意义: | 气象要素||变量名||单位||物理意义 | 近地面气温 ||temp|| K || 瞬时近地面(2m)气温 | 地表气压 || pres|| Pa || 瞬时地表气压 | 近地面空气比湿 || shum || kg/ kg ||瞬时近地面空气比湿 | 近地面全风速 || wind || m /s || 瞬时近地面(风速仪高度)全风速 | 向下短波辐射|| srad || W /平方米 || 3 小时平均 (-1.5hr ~ +1.5hr) 向下短波辐射 | 向下长波辐射||lrad ||W /平方米 ||3 小时平均 (-1.5hr ~ +1.5hr) 向下长波辐射 | 降水率||prec||mm/hr ||3 小时平均 (-3.0hr ~ 0.0hr) 降水率 更多信息,请参见随数据一同发布的《User’s Guide for China Meteorological Forcing Dataset》。 最新版本(01.06.0014)的主要变化有: 1. 将数据延伸到 2015 年 12 月(短波和长波数据例外,只到 2015 年 10 月,2015 年 11-12 月的数据系根据 GLDAS 数据插值得到,误差可能会偏大); 2. 设定风速最小值为 0.05 m/s; 3. 修正了之前辐射算法中的一个 bug,使我们的短波和长波数据在晨昏时段更合理。 4. 修正了降水数据的 bug,更改涉及的时段是 2011-2015 年。
阳坤, 何杰
该数据由“中国1:100万湿地数据”剪裁而来。 “中国1:100万湿地数据”主要反映2000年代全国沼泽湿地信息,采用十进制度为单位的地理坐标表示,主要内容包括:沼泽湿地的类型、湿地的水源补给类型、土壤类型、主要植被类型、所属地理区域等。执行了《中国可持续发展信息共享系统信息分类与编码标准》。本数据库数据源:1:20沼泽图(内部版)、青藏高原1:50万沼泽图(内部版)、沼泽调查数据1:100万和全国1:400万沼泽图;处理步骤为:数据源选择、预处理、沼泽湿地要素数字化与编码、数据编辑处理、建立拓扑关系、接边处理、投影转换、与地名等属性数据库连结并获取属性数据。
张树清
本数据集主要包含Nimbus-7卫星携带的扫描式多通道微波辐射计(SMMR:Scanning Multichannel Microwave Radiometer)获得的被动微波亮度温度,包含1978年10月25日-1987年8月20日的06H、06V、10H、10V、18H、18V、21H、21V、37H、37V共十个微波通道的每天两次过境(升轨&降轨)亮度温度,其中H代表水平极化,V代表垂直极化。 1978年10月发射的Nimbus-7为太阳同步极轨卫星,搭载的微波传感器SMMR,是一台测量地表五个频率(6.6GHz,10.69GHz,18.0GHz,21.0GHz,37.0GHz)微波亮温的双极化微波辐射计。它以约50.3°固定入射角扫描地表,幅宽780km,并在正午12:00(升轨)与午夜24:00(降轨)通过赤道。SMMR时间分辨率为每日,但由于swath间距离较宽,大概每隔5-6天才会重访同一地表。 1、文件格式和命名: 每组数据均由遥感数据文件构成。 SMMR_Grid_China目录下的每组数据文件名及命名规则如下: SMMR-MLyyyydddA/D.subset.ccH/V(遥感数据) 其中:SMMR代表SMMR传感器;ML代表多通道低分辨率;yyyy代表年份;ddd代表该年的儒略日(1-365/366);A/D分别代表升轨(A)和降轨(D);subset表示中国地区的亮温数据;cc代表频率(6.6GHz,10.69GHz,18.0GHz,21.0GHz,37.0GHz);H/V分别代表水平极化(H)和垂直极化(V)。 2、坐标系及投影: 投影方式为等积割圆柱投影,双标准纬线为南北纬30度。有关EASE-GRID的相关详细信息,请参考http://www.ncgia.ucsb.edu/globalgrids-book/ease_grid/。 如果需要将EASE-Grid投影方式转换成Geographic投影方式,请参照ease2geo.prj文件,内容如下: Input projection cylindrical units meters parameters 6371228 6371228 1 /* Enter projection type (1, 2, or 3) 0 00 00 /* Longitude of central meridian 30 00 00 /* Latitude of standard parallel Output Projection GEOGRAPHIC Spheroid KRASovsky Units dd parameters end 3、数据格式: 以整数形二进制存储,每个数据占2个字节。本数据集中实际存储的数据为亮温*10,读出数据后需除以10得到真实亮温。 空间分辨率:25km; 时间分辨率:逐日,从1978年至1987年。 4、空间范围: 经度:60.1°-140.0°东经; 纬度:14.9°-55.0°北纬。 5、数据读取 每一组数据的遥感影像数据文件可以在ENVI和ERDAS软件中打开。
NSIDC
本数据集主要包括美国国防气象卫星计划卫星(DMSP-F08、DMSP-F11、DMSP-F13和DMSP-F17)搭载的星载微波辐射计SSM/I和SSMIS的每日两次(升轨&降轨)亮度温度(K),时间覆盖范围为1987年9月15日至2015年12月31日。DMSP-F08、DMSP-F11和DMSP-F13的SSM/I亮温包含19.35H、19.35V、22.24V、37.05H、37.05V、85.50H和85.50V共七个通道;而DMSP-F17的SSMIS亮温观测由19.35H、19.35V、22.24V、37.05H、37.05V、91.66H和91.66V共七个通道组成。其中,DMSP-F08卫星亮温的覆盖时间为1987年9月15日至1991年12月31日;DMSP-F11卫星亮温的覆盖时间为1992年1月1日至1995年12月31日;DMSP-F13卫星亮温的覆盖时间为1996年1月1日至2009年4月29日;DMSP-F17卫星亮温的覆盖时间为2009年1月1日至2015年12月31日。 1、文件格式和命名: 亮度温度以年为单位分别存放,每个目录中均由各频率的遥感数据文件构成,其中SSMIS数据中还包含.TIM时间信息文件。 各数据文件名及其命名规则如下: EASE-Fnn-ML/HyyyydddA/D.subset.ccH/V(遥感数据) EASE-Fnn-ML/HyyyydddA/D.subset.TIM(时间信息文件) 其中:EASE代表EASE-Grid投影方式;Fnn代表卫星编号(F08、F11、F13、F17);ML/H分别代表多通道低分辨率和多通道高分辨率;yyyy代表年份;ddd代表该年的儒略日(1-365/366);A/D分别代表升轨(A)和降轨(D);subset 表示中国地区的亮温数据;cc代表频率(19.35GHz、22.24 GHz、37.05GHz、85.50GHz、91.66GHz);H/V分别代表水平极化(H)和垂直极化(V)。 2、坐标系及投影: 本数据集投影方式为EASE-Grid,即等积割圆柱投影,双标准纬线为南北纬30°。有关EASE-GRID的相关详细信息,请参考http://www.ncgia.ucsb.edu/globalgrids-book/ease_grid/。 如果需要将EASE-Grid投影方式转换成Geographic投影方式,请参照ease2geo.prj文件,内容如下: Input projection cylindrical units meters parameters 6371228 6371228 1 /* Enter projection type (1, 2, or 3) 0 00 00 /* Longitude of central meridian 30 00 00 /* Latitude of standard parallel Output Projection GEOGRAPHIC Spheroid KRASovsky Units dd parameters end 3、数据格式: 以整数型二进制存储,行列号:308*166,每个数据占2个字节。本数据集中实际存储的数据为亮温*10,读出数据后需除以10得到真实亮温。 4、数据分辨率: 空间分辨率:25.067525km,12.5km(SSM/I 85GHz,SSMIS 91GHz) 时间分辨率:逐日,从1978年至2015年。 5、空间范围: 经度:60.1°-140.0°东经; 纬度:14.9°-55.0°北纬。 6、数据读取: 每一组数据中的遥感影像数据文件可以在ArcMap、ENVI和ERDAS软件中打开。
National Snow and Ice Data Center(NSIDC)
该数据由“中国1:100万湿地数据”剪裁而来。 “中国1:100万湿地数据”主要反映2000年代全国沼泽湿地信息,采用十进制度为单位的地理坐标表示,主要内容包括:沼泽湿地的类型、湿地的水源补给类型、土壤类型、主要植被类型、所属地理区域等。执行了《中国可持续发展信息共享系统信息分类与编码标准》。本数据库数据源:1:20沼泽图(内部版)、青藏高原1:50万沼泽图(内部版)、沼泽调查数据1:100万和全国1:400万沼泽图;处理步骤为:数据源选择、预处理、沼泽湿地要素数字化与编码、数据编辑处理、建立拓扑关系、接边处理、投影转换、与地名等属性数据库连结并获取属性数据。
张树清
该数据由“中国1:100万湿地数据”剪裁而来。 “中国1:100万湿地数据”主要反映2000年代全国沼泽湿地信息,采用十进制度为单位的地理坐标表示,主要内容包括:沼泽湿地的类型、湿地的水源补给类型、土壤类型、主要植被类型、所属地理区域等。执行了《中国可持续发展信息共享系统信息分类与编码标准》。本数据库数据源:1:20沼泽图(内部版)、青藏高原1:50万沼泽图(内部版)、沼泽调查数据1:100万和全国1:400万沼泽图;处理步骤为:数据源选择、预处理、沼泽湿地要素数字化与编码、数据编辑处理、建立拓扑关系、接边处理、投影转换、与地名等属性数据库连结并获取属性数据。
张树清
该数据由“中国1:100万湿地数据”剪裁而来。 “中国1:100万湿地数据”主要反映2000年代全国沼泽湿地信息,采用十进制度为单位的地理坐标表示,主要内容包括:沼泽湿地的类型、湿地的水源补给类型、土壤类型、主要植被类型、所属地理区域等。执行了《中国可持续发展信息共享系统信息分类与编码标准》。本数据库数据源:1:20沼泽图(内部版)、青藏高原1:50万沼泽图(内部版)、沼泽调查数据1:100万和全国1:400万沼泽图;处理步骤为:数据源选择、预处理、沼泽湿地要素数字化与编码、数据编辑处理、建立拓扑关系、接边处理、投影转换、与地名等属性数据库连结并获取属性数据。
张树清
该数据由“中国1:100万湿地数据”剪裁而来。 “中国1:100万湿地数据”主要反映2000年代全国沼泽湿地信息,采用十进制度为单位的地理坐标表示,主要内容包括:沼泽湿地的类型、湿地的水源补给类型、土壤类型、主要植被类型、所属地理区域等。执行了《中国可持续发展信息共享系统信息分类与编码标准》。本数据库数据源:1:20沼泽图(内部版)、青藏高原1:50万沼泽图(内部版)、沼泽调查数据1:100万和全国1:400万沼泽图;处理步骤为:数据源选择、预处理、沼泽湿地要素数字化与编码、数据编辑处理、建立拓扑关系、接边处理、投影转换、与地名等属性数据库连结并获取属性数据。
张树清
该数据由“中国1:100万湿地数据”剪裁而来。 “中国1:100万湿地数据”主要反映2000年代全国沼泽湿地信息,采用十进制度为单位的地理坐标表示,主要内容包括:沼泽湿地的类型、湿地的水源补给类型、土壤类型、主要植被类型、所属地理区域等。执行了《中国可持续发展信息共享系统信息分类与编码标准》。本数据库数据源:1:20沼泽图(内部版)、青藏高原1:50万沼泽图(内部版)、沼泽调查数据1:100万和全国1:400万沼泽图;处理步骤为:数据源选择、预处理、沼泽湿地要素数字化与编码、数据编辑处理、建立拓扑关系、接边处理、投影转换、与地名等属性数据库连结并获取属性数据。
张树清
该数据由“中国1:100万湿地数据”剪裁而来,得到甘肃省100万湿地数据。 “中国1:100万湿地数据”主要反映2000年代全国沼泽湿地信息,采用十进制度为单位的地理坐标表示,主要内容包括:沼泽湿地的类型、湿地的水源补给类型、土壤类型、主要植被类型、所属地理区域等。执行了《中国可持续发展信息共享系统信息分类与编码标准》。本数据库数据源:1:20沼泽图(内部版)、青藏高原1:50万沼泽图(内部版)、沼泽调查数据1:100万和全国1:400万沼泽图;处理步骤为:数据源选择、预处理、沼泽湿地要素数字化与编码、数据编辑处理、建立拓扑关系、接边处理、投影转换、与地名等属性数据库连结并获取属性数据。
张树清
该数据集是“中国雪深长时间序列数据集(1978-2012)”的升级版本。 中国雪深长时间序列数据集(1979-2023)采用经纬度投影方式,数据为浮点型。数据集按年份存储,每个年份是一个压缩包,每个压缩包内包含每天的积雪深度文件。每天的雪深用一个txt文件存储,文件的名称为“yyyyddd.txt”,其中yyyy代表年,ddd代表Julian日期,雪深单位为厘米(cm)。比如2005001.txt就代表这个ASCII文件描述2005年第一天我国的积雪覆盖状况。数据集的ASCII码文件是由头文件和主体内容构成,头文件包括行数、列数、x-轴中心点坐标、y-轴中心点坐标、栅格大小、无数据区标值等6行描述信息组成,主体内容就是根据行数列数组成的二维数组,雪深单位为厘米(cm)。因为该数据集中的所有ASCII码文件所描述的空间为我国全国范围,所以这些文件的头文件是不变的,现将头文件摘录如下(其中xllcenter, yllcenter, cellsize单位为度): ncols 321 nrows 161 xllcenter 60 yllcenter 15 cellsize 0.25 NODATA_value -1。 该数据集是采用中国被动微波雪深反演算法Che算法,从星载被动微波亮度温度数据提取。星载被动微波亮度温度数据来自多个传感器,本数据采用的传感器包括Nimbus7上的SMMR(1979-1988),DMSP-F08,F11,F13上的SSMI(1988-2008),DMSP-F17上的SSMI/S(2009-2020),Aqua上的AMSR-E (2002-2011),GCOM-W1上的AMSR2 (2012-)。考虑到不同传感器之间的系统差异,在进行雪深反演前,已对对不同传感器进行了交叉订正。 数据包含三个压缩文件:daily snow depth _smmr_ssmis_China (1978-2020),daily snow depth _amsre_China(2002-2011),daily snow depth_amsr2_China(2012-2023)。第一个是从SMMR,SSMI,SSMI/S提取的1978-2020年逐日雪深,第二个是从AMSR-E提取的2002-2011年逐日雪深,第三个是从AMSR2提取的2012-2023年逐日雪深。从2021年开始SSMI/S数据与之前差异较大,因此,之后的数据不再根据SSMI/S数据更新。AMSR-E数据结束时间是2011年9月27日。AMSR2数据从2012年9月1日开始,目前仍在运行,今后将根据AMSR2数据继续更新中国长时间序列数据集。
车涛, 戴礼云, 李新
该数据包括公元前2300 年至公元2005 年间发生在全国各地的各级地震,共33 万余条目录,每条包括地震时间、震中经度、震中纬度、震源深度、定位精度和震级。本数据由国家地震局首先发布。 中国地震目录包含一个Mapinfo 图层(Total_0510Time)和后缀名分别为.TAB,.MAP,.DAT,.ID 的文件,它们的功能如下: TAB:主文件,包含表格数据结构及实体数据格式字段; MAP:包含地图对象的地理数据文件; ID:图形对象文件(MAP)的索引文件; DAT:表格数据文件。
马瑾
1962-2011年中国大陆各分区近地表气温直减率数据集是中国科学院青藏高原研究所王磊研究员课题组的研究成果。 该数据集将中国大陆分成了24个研究区域,在word文档(description of groups.doc)中描述了各分区的经纬度范围,也可以从数据的缩略图中浏览各分区的空间分布。 气温直减率数据集以EXCEL格式描述,包括了整个中国地区各个分区的年平均以及四季平均的lapse rate数值。 该统计基于553个包含完整月系列的中国气象局常规气象站的2m气温观测,并利用另外201个气象站(有缺值)做了独立验证。 更多信息,请参见随数据一同发布的期刊文献。
王磊
中国西部地貌信息集成是由中国科学院地理科学与资源环境研究所谢传节博士领导的小组完成的。其中包括1:400万全国地貌数据库和1:100万西部地貌数据库,1:400万地貌数据是追踪收集和整理由中国科学院国家计划委员会地理所编制,李炳元主编的“中国地貌图(1:400万)”和陈志明主编的“中国及其毗邻地区地貌图(1:400万)”。对资料进行扫描配准,利用ArcMap软件将所有配准得图件进行矢量化,并建立各自得分类和代码体系,按照图斑(普染色)和符号将地貌类型分为基本地貌类型和形态结构类型(点、线、面表示),数据分为构造地貌和形态地貌。 投影信息: Projection: Albers False_Easting: 0.000000 False_Northing: 0.000000 Central_Meridian: 105.000000 Standard_Parallel_1: 25.000000 Standard_Parallel_2: 47.000000 Latitude_Of_Origin: 0.000000 Linear Unit: Meter (1.000000) Geographic Coordinate System: datumg Angular Unit: Degree (0.017453292519943299) Prime Meridian: <custom> (0.000000000000000000) Datum: D_Krasovsky_1940 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000
程维明, 周成虎
本数据集的源数据来源于第二次土壤普查的1:100万中国土壤图和8595个土壤剖面。本数据包括剖面深度、土层厚度、砂粒、粉粒、粘粒、砾石、容重、孔隙度、土壤结构、土壤颜色、pH值、有机质、氮、磷、钾、可交换阳离子量、可交换的氢、铝、钙、镁、钾、钠离子和根量。数据集还提供了数据质量控制信息。 数据为栅格格式,空间分辨率为30弧秒。为便于使用CLM模型,土壤数据分为8层,最到深度为2.3米 (i.e. 0- 0.045, 0.045- 0.091, 0.091- 0.166, 0.166- 0.289, 0.289- 0.493, 0.493- 0.829, 0.829- 1.383 and 1.383- 2.296 m) 数据文件说明: 1 Soil profile depth PDEP.nc 2 Soil layer depth "LDEP.nc LNUM.nc" 3 pH Value (H2O) PH.nc 4 Soil Organic Matter SOM.nc 5 Total N TN.nc 6 Total P TP.nc 7 Total K TK.nc 8 Alkali-hydrolysable N AN.nc 9 Available P AP.nc 10 Available K AK.nc 11 Cation Exchange Capacity (CEC) CEC.nc 12 Exchangeable H+ H.nc 13 Exchangeable Al3+ AL.nc 14 Exchangeable Ca2+ CA.nc 15 Exchangeable Mg2+ MG.nc 16 Exchangeable K+ K.nc 17 Exchangeable Na+ NA.nc 18 Particle-Size Distribution Sand SA.nc Silt SI.nc Clay CL.nc 19 Rock fragment GRAV.nc 20 Bulk Density BD.nc 21 Porosity POR.nc 22 Color (water condition unclear) Hue Unh.nc Value Chroma Unc.nc 23 Dry Color Hue Dh.nc Value Chroma Dc.nc 24 Wet Color Hue Wh.nc Value Chroma Wc.nc 25 Dominant and Second Structure S1.nc SW1.nc RS.nc 26 Dominant and Second Consistency C1.nc CW1.nc RC.nc 27 Root Abundance Description R.nc
上官微, 戴永久
本研究所用的数据由美国EROS(地球资源观测系统)数据中心的探路者数据库提供,其植被指数NDVI的制备过程为:采用经过辐射校正和几何粗校正的NOAA-AVHRR数据源,再进一步对每日、每轨图像进行几何精校正、除坏线、除云等处理,进而进行NDVI计算及合成。每日的NDVI计算公式为:1000×(b2-b1)/(b2+b1),其中b1、b2为AVHRR的第1、2通道。 Pathfinder AVHRR的参数表 参数/变量 定义 单元 值域 NDVI 归一化植被指数 无 (-1,1) CLAVR标识 从CLAVR算法中的云量指数 无 (0,30) QC标识 数据质量标识 无 (0,16) 扫描角度 传感器的角度 弧度 (-1.05,1.05) 太阳天顶角 每个像元的太阳天顶角 弧度 (0,1.04) 相对天顶角 传感器的相对天顶角 弧度 (-1.05,1.05) Ch1反射率 第一通道的反射率 (0.58-0.68um) 百分比 (0,100) Ch2反射率 第二通道的反射率 (0.72-1.10um) 百分比(0,100) Ch3亮温 第三通道的亮温值(3.55-3.95um) 开氏温标(160,340) Ch4亮温 第四通道的亮温值(10.3-11.3um)开氏温标(160,340) Ch5亮温 第五通道的亮温值(11.5-12.5um)开氏温标(160,340) 数据集包括1981至2001年6月至9月每旬中国子区NDVI的数据及1982、1986、1991和1996年全年各月每旬的数据(共84个月的343幅,其中1981年6月和7月第1旬、1994年9月第3旬缺少数据) 数据集属性及格式: 本数据集以年为文件夹进行存储,其中包含相同文件名下的.HDR头文件、.IMG文件和.JPG图像文件,其中IMG中数据以整数型进行存储。命名规则如下: avhrrpf.*.Intfgl.yymmdd_geo其中*代表ch1或ch2或ch4或ch5或ndvi,其具体含义与值域请参考表 1;yy代表年的末尾两位数;mm代表月份;dd代表具体日期。 数据投影: Size is 963, 688 Coordinate System is: GEOGCS["WGS 84", DATUM["WGS_1984", SPHEROID["WGS 84",6378137,298.257223563, AUTHORITY["EPSG","7030"]], TOWGS84[0,0,0,0,0,0,0], AUTHORITY["EPSG","6326"]], PRIMEM["Greenwich",0, AUTHORITY["EPSG","8901"]], UNIT["degree",0.0174532925199433, AUTHORITY["EPSG","9108"]], AUTHORITY["EPSG","4326"]] Origin = (70.035426000000001,54.945585999999999) Pixel Size = (0.072727000000000,-0.072727000000000) Corner Coordinates: Upper Left ( 70.0354260, 54.9455860) ( 70d 2'7.53"E, 54d56'44.11"N) Lower Left ( 70.0354260, 4.9094100) ( 70d 2'7.53"E, 4d54'33.88"N) Upper Right ( 140.0715270, 54.9455860) (140d 4'17.50"E, 54d56'44.11"N) Lower Right ( 140.0715270, 4.9094100) (140d 4'17.50"E, 4d54'33.88"N) Center ( 105.0534765, 29.9274980) (105d 3'12.52"E, 29d55'38.99"N) Band 1 Block=963x1 Type=UInt16, ColorInterp=Undefined Computed Min/Max=1.000,55480.000
Tucker, C.J., J.E.Pinzon, M.E.Brown
由欧洲联盟委员会赞助的VEGETATION传感器于1998年3月由SPOT-4搭载升空,从1998年4月开始接收用于全球植被覆盖观察的SPOTVGT数据,该数据由瑞典的Kiruna地面站负责接收,由位于法国Toulouse的图像质量监控中心负责图像质量并提供相关参数(如定标系数),最终由比利时弗莱芒技术研究所(Flemish Institute for Technological Research,Vito)VEGETATION影像处理中心(VEGETATION processing Centre,CTIV)负责预处理成逐日1km 全球数据。预处理包括大气校正,辐射校正,几何校正,生产10天最大化合成的NDVI数据,并将-1到-0.1的值设置为-0.1,再通过公式DN=(NDVI+0.1)/0.004转换到0-250的DN值。 该数据集是中国子集提取,包含每10天合成的四个波段的光谱反射率及10天最大化NDVI,为1998-2007年数据,空间分辨率为1km,时间分辨率为逐旬。 文件格式: .hfr和.img文件各一个。 文件命名规则为:CHN_NDV_YYYYMMDD,其中YYYYMMDD就是该文件代表的当天日期,也是区别于其他文件的主要标识。 用户用来分析植被指数的后缀名为.IMG和.HDF的遥感影像文件,都可以在ENVI和ERDAS软件中打开。 坐标系及投影 Plate_Carree (Lon/Lat) PROJ_CENTER_LON 0.000000 PROJ_CENTER_LAT 0.000000 PIXEL_SIZE_UNITS DEGREES/PIXEL PIXEL_SIZE_X 0.0089285714 PIXEL_SIZE_Y 0.0089285714 SEMI_AXIS_MAJ 6378137.000000 SEMI_AXIS_MIN 6356752.314000 UL_LON (DEG) 73.000000 UL_LAT (DEG) 54.000000 LR_LON (DEG) 135.500000 LR_LAT (DEG) 5.000000 角点坐标分别为: Corner Coordinates: Upper Left ( 69.9955357, 55.0044643) Lower Left ( 69.9955357, 14.9955358) Upper Right ( 137.0044641, 55.0044643) Lower Right ( 137.0044641, 14.9955358) 其中Upper Left 为左上角,Lower Left 为左下角,Upper Right 为右上角,Lower Right 为右下角。
Greet JANSSENS, Food and Agriculture Organization of the United Nations(FAO)
SRTM的传感器有两个波段,分别是C波段和X波段,我们现在使用的SRTM都自于C波段。公开发布的SRTM数字高程产品包括三种不同分辨率的DEM 数据: * SRTM1 覆盖范围仅仅包括美国大陆,其空间分辨率为1s ; * SRTM3 数据覆盖全球, 空间分辨率为3s,这是目前使用最为广泛的数据集,SRTM3的高程基准是EGM96的大地水准面,平面基准是WGS84;标称绝对高程精度是±16m,绝对平面精度是±20m。 * SRTM30 数据同样覆盖全球 ,分辨率是30s. SRTM数据存在多个版本,早期的SRTM数据由NASA“喷气推进实验室”(JPL ,Jet Propulsion Laboratory)地面数据处理系统( GDPS)来完成的,数据被称为SRTM3-1。美国国家地理空间情报局对数据做了更进一步的处理,缺少情况得到明显改进,数据称为SRTM3-2。 该数据集主要是第四版本由 CIAT(国际热带农业中心)利用新的插值算法得到的SRTM地形数据,此方法更好的填补了SRTM 90的数据空洞。插值算法来自于Reuter et al.(2007) SRTM的数据组织方式为:每5度经纬度方格划分一个文件,共分为24行(-60至60度)和72列(-180至180度)。文件命名规则为srtm_XX_YY.zip,XX表示列数(01-72),YY表示行数(01-24)。 数据分辨率90米 数据使用:SRTM的数据是用16位的数值表示高程数值的(-/+/32767米),最大的正高程9000米,负高程(海平面以下12000米)。空数据用-32767标准
CGIAR-CSI
该数据集是将沙漠专题地图的图形数据建立的我国第一个1∶10万沙漠空间数据库,重点反映我国沙漠的地理分布、面积大小、沙丘的流动性与固定程度。按照系统设计要求及有关标准,将输入数据进行标准化,统一转换为各类数据输入的标准格式。建库以交付系统运行。 本项目以2000年的TM影像为信息源,在全国土地利用现状图的Coverage和2000年TM数字影像信息,进行解译、提取、修编,利用遥感与地理信息系统技术结合以1:10万比例尺专题图成图要求,对我国的沙漠、沙地和砾质戈壁进行了专题制图。1∶10万全国沙漠分布图可以使用户在从事资源与环境的研究工作时节省大量的数据录入和编辑工作。数字地图能非常方便地转化为版式地图 数据集属性如下: 分为e00和shp两个文件夹: 文件夹内各省沙漠分布图名称与省份对照表 01 Ahsm 安徽省 02 Bjsm 北京市 03 Fjsm 福建省 04 Gdsm 广东省 05 Gssm 甘肃省 06 Gxsm 广西壮族自治区 07 Gzsm 贵州省 08 Hebsm 河北省 09 Hensm 河南省 10 Hljsm 黑龙江省 11 Hndsm 海南省 12 Hubsm 湖北省 13 Jlsm 吉林省 14 Jssm 江苏省 15 Jxsm 江西省 16 Lnsm 辽宁省 17 Nmsm 内蒙固自治区 18 Nxsm 宁夏回族自治区 19 Qhsm 青海省 20 Scsm 四川省 21 Sdsm 山东省 22 Sxsm 陕西省 23 Tjsm 天津市 24 Twsm 台湾省 25 Xjsm 新疆维吾尔自治区 26 Xzsm 西藏自治区 27 Zjsm 浙江省 28 Shxsm 山西省 1、数据投影: Projection: Albers False_Easting: 0.000000 False_Northing: 0.000000 Central_Meridian: 105.000000 Standard_Parallel_1: 25.000000 Standard_Parallel_2: 47.000000 Latitude_Of_Origin: 0.000000 Linear Unit: Meter (1.000000) 2、数据属性表:area(面积) perimeter(周长) ashm_(序列码) class(沙漠编码) ashm_id(沙漠编码) 3、沙漠编码:流动沙地 2341010 半流动沙地 2341020 半固定沙地 2341030 戈壁 2342000 盐碱地 2343000 4:文件格式:全国、分省及县级沙漠图的数据类型为矢量型的shapefile和E00 5:文件命名: 基于国家基本资源与环境遥感动态信息服务系统数据组织在Windows NT的文件管理层面上进行,文件和目录名采用英文字和数字的复合名称,分省沙漠图以省、区名拼音+SM构成,如甘肃省沙漠分布图即为GSSM。旗、县沙漠图为省区名拼音+xxxx,xxxx为旗、县代码后四位数值,如兰州沙漠图命名为GS0101。省、区和旗、县的分幅切割以国家级基本资源与环境遥感动态信息服务运行系统中的行政区划数据文件为据。
王建华, 王一谋, 颜长珍, 祁元
基于静止卫星和再分析资料的中国区域大气驱动数据集是由中国气象局制备的一套具有较高时空分辨率的大气驱动数据集,空间分辨率为0.1°×0.1°,时间分辨率为1小时,覆盖范围为东经75°-135°,北纬15°-55°,包含近地面气温、相对湿度、地面气压、近地面风速、地表入射太阳辐射和地面降水率6个要素。其中降水产品的制备过程如下:利用中国风云二号静止卫星多通道数据所反演的6小时累积降水估计与常规地面观测6小时累积降水进行数据融合,获得6小时累积降水空间分布数据,然后利用静止卫星多通道反演的高分辨率云分类信息确定累积降水时间插值权重,得到1小时累积降水估计。辐射资料的制备过程如下:基于FY-2C的地表入射太阳辐射采用辐射传输模型DISORT(Discrete Ordinates Radiative Transfer Program for a Multi-Layered Plane-parallel Medium)进行辐射传输计算,获得逐小时0.1°×0.1°的中国区域地表入射太阳辐射数据。其他要素的制备过程:对1.0°×1.0°的NCEP再分析资料采用空间和时间插值方法,获得逐小时0.1°×0.1°的近地面气温、相对湿度、地面气压、近地面风速等驱动要素。 各变量的物理意义: 气象要素 || 变量名 || 单位 || 物理意义 | 地面气温 || TBOT || K || 近地面(2m)气温 | 地表气压 || PSRF || Pa || 地表气压 | 地面相对湿度 || RH || kg/ kg ||近地面(2m)相对湿度 | 地面风速 || WIND || m /s ||近地面(风速仪高度)风速 | 地表入射太阳辐射|| FSDS || W /m2 || 地表入射太阳辐射 | 降水率||PRECTmms||mm/hr || 降水率 更多信息,请参见随数据一同发布的数据文档。
师春香
沙漠化是我国北方干旱、半干旱及部分半湿润地区由于人地关系不相协调所造成的以风沙活动为主要标志的土地退化。 数据源:中国冰川冻土沙漠研究所编绘,中国科学院地理研究所协作,根据七十年代航片,加上实地调研,绘制的1:200万沙漠图,图中中国国界是根据地图出版社一九七一年出版的1:400万《中华人民共和国地图》地图绘制。 一、数据集内容 1、Desert_Ch_2009(沙漠分布) 2、Dune_hight_Ch_200(沙丘高度) 3、Gobi_Ch_200(戈壁) 4、Wind_eroded_land_Ch_200(风蚀地数据) 二、沙漠化属性表字段如下: (1)Semifixed(半固定沙丘):缓起伏沙地(2-1)、灌丛沙丘(2-2)、抛物线状沙丘(2-3)、梁窝状沙丘(2-4)、沙垄及树枝状沙垄(2-5)、蜂窝状沙丘(2-6)、蜂窝状沙垄(2-7)、复合型沙垄(2-8) (2)Fixation(固定沙丘):平沙地(3-1)、草原丛沙堆(3-2)、沙垄(3-3)、蜂窝状沙丘(3-4) (3)Migratory(流动沙丘):新月形沙丘及沙丘链(1-1)、新月形沙垄及沙垄(1-2)、格状沙丘及格状沙丘链(1-3)、鱼鳞状沙丘(1-4)、羽毛状沙垄(1-5)、金字塔沙丘(1-6)、复合型沙丘及沙丘链(1-7)、复合型沙垄(1-8)、复合型穹状沙丘(1-9)、链状沙山(沙丘)(1-10)、迭置型链状沙山(1-11)、复合型垄状沙山(1-12)、复合型链状沙山(1-13)、金字塔形沙山(1-14) (4)class_id:沙化属性编码 三、投影信息 PROJCS["Albers", GEOGCS["GCS_Beijing_1954", DATUM["Beijing_1954", SPHEROID["Krasovsky_1940",6378245.0,298.3]], PRIMEM["Greenwich",0.0], UNIT["Degree",0.0174532925199433]], PROJECTION["Albers_Conic_Equal_Area"], PARAMETER["False_Easting",0.0], PARAMETER["False_Northing",0.0], PARAMETER["longitude_of_center",105.0], PARAMETER["Standard_Parallel_1",25.0], PARAMETER["Standard_Parallel_2",47.0], PARAMETER["latitude_of_center",0.0], UNIT["Meter",1.0]]
王建华
本数据采用土壤转换函数以砂粒、粉粒、粘粒、有机质、容重作为输入估计出土壤水文参数,包括Clapp and Hornberger函数和van Genuchten and Mualem函数的参数、田间持水量和凋萎系数。中位数和变异系数(CV)提供的估计。 数据集为栅格格式,分辨率为30弧秒,土壤垂直分层为7层,最大厚度1.38米(即0 - 0.045,0.045 - -0.091,0.091 - -0.166,0.166 - -0.289,0.289 - -0.493,0.493 - -0.829,0.829 - -1.383米)。 数据采用NetCDF格式存储,数据文件名称及其说明如下: 1.THSCH.nc: Saturated water content of FCH 2.PSI_S.nc: Saturated capillary potential of FCH 3.LAMBDA.nc: Pore size distribution index of FCH 4.K_SCH.nc: Saturate hydraulic conductivity of FCH 5.THR.nc: Residual moisture content of FGM 6.THSGM.nc: Saturated water content of FGM 7.ALPHA.nc: The inverse of the air-entry value of FGM 8.N.nc: The shape parameter of FGM 9.L.nc: The pore-connectivity parameter of FGM 10.K_SVG.nc: Saturated hydraulic conductivity of FGM 11.TH33.nc: Water content at -33 kPa of suction pressure, or field capacity 12.TH1500.nc: Water content at -1500 kPa of suction pressure, or permanent wilting point
上官微, 戴永久
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件