• 青海省海西州污染源监控中心运行情况周报(2018-2019)

    The data set records the operation of the pollution source monitoring center in Haixi Prefecture of Qinghai Province from July 2018 to September 2019. The data is collected from the Department of ecological environment of Haixi Prefecture. The data set contains 42 text files, recording the weekly report of Haixi pollution source monitoring center from July 2018 to September 2019, and each file records the content of the weekly report once. Including the video monitoring system operation, online monitoring system operation, new online monitoring system construction acceptance, online monitoring system construction acceptance, online monitoring data analysis and transmission efficiency. Data coverage time range: July 16, 2018 to September 1, 2019.

    0 2022-04-19

  • 1.5度和2度阈值对应的10年区间中亚地区高分辨率极端气候变化情景数据(气温、降水)

    This dataset is the high-resolution downscaled results of three global circulation models (CCSM4, HadGEM2-ES, and MPI-ESM-MR) from CMIP5. The regional climate model applied is the WRF model. The domain of this dataset covers the five countries of Central Asia. Its horizontal resolution is 9km. The future (reference) period is 2031-2050 (1986-2005), which includes the 10 years under 1.5-2℃ global warming. The carbon emission scenario is RCP4.5. The variances are annual mean temperature at 2m and precipitation (cumulus and grid-scale precipitation). This dataset can be used to project the climate in Central Asia.

    0 2022-04-19

  • 全球历史潮位观测数据集(1913-2017)

    The UHSLC offers tide gauge data with two levels of quality-control (QC). Fast Delivery (FD) data are released within 1-2 months of data collection and receive only basic QC focused on large level shifts and obvious outliers. The GLOSS/CLIVAR (formerly known as the WOCE) "fast" sea level data is distributed as hourly, daily, and monthly values. This project is supported by the NOAA Climate and Global Change program, and is one of the activities of the University of Hawaii Sea Level Center. Each file is given a name "h###.dat" where "h" denotes hourly sea level data and "###" denotes the station number. A file exists for every station with hourly data. The UHSLC datasets are GLOSS data streams (read more here). There are many tide gauge records in the UHSLC database, but the backbone is the GLOSS Core Network (GCN) – a global set of ~300 tide gauge stations that serve as the foundation of the global in situ sea level network. The network is designed to provide evenly distributed sampling of global coastal sea level variation at a variety of time-scales.

    0 2022-04-19

  • 青藏高原内陆流域年际湖泊面积数据产品(1986-2019)(V1.0)

    This data provides the annual lake area of ​​582 lakes with an area greater than 1 km2 in the enorheic basin of the Qinghai-Tibet Plateau from 1986 to 2019. First, based on JRC and SRTM DEM data, 582 lakes are identified in the area that are larger than 1 km2. All Landsat 5/7/8 remote sensing images covering a lake are used to make annual composite images. NDWI index and Ostu algorithm were used to dynamically segment lakes, and the size of each lake from 1986 to 2019 is then calculated. This study is based on the Landsat satellite remote sensing images, and using Google Earth Engine allowed us to process all Landsat images available to create the most complete annual lake area data set of more than 1 km2 in the Qinghai-Tibet Plateau area; A set of lake area automatic extraction algorithms were developed to calculate of the area of ​​a lake for many years; This data is of great significance for the analysis of lake area dynamics and water balance in the Qinghai-Tibet Plateau region, as well as the study of the climate change of the Qinghai-Tibet Plateau lake.

    0 2022-04-19

  • “一带一路”沿线65个国家自然灾害数据(1900-2018)

    "Disaster data for countries along the belt and road, mainly from the global disaster database.The records information of disaster database are from the United Nations, government and non-governmental organizations, research institutions and the media. It's documented in detail such as the country where the disaster occurred, the type of disaster, the date of the disaster, the number of deaths and the estimated economic losses. This study extracts the natural disaster records of the countries along the One Belt And One Road line one by one from the database, and finally forms the disaster database of 9 major disasters of the 65 countries. The natural disaster records collected can be roughly divided into nine categories, including: floods, landslides, extreme temperatures, storms, droughts, forest fires, earthquakes, mass movements and volcanic activities. From 1900 to 2018, a total of 5,479 disaster records were recorded in countries along the One Belt And One Road. From 2000 to 2015, there were 2,673 disaster records. On this basis, the natural disasters of the countries along the belt and road are investigated from four aspects, including disaster frequency, death toll, disaster-affected population and economic loss assessment. Overall, since 1900, a total of 5479 natural disasters have occurred in countries along the One Belt And One Road, resulting in about 19 million deaths and economic losses of about 950 billion us dollars. Among them, the most frequent occurrence is flood and storm; the biggest economic losses are floods and earthquakes; the most affected people are flood and drought; drought and flooding are the leading causes of death

    0 2022-04-19

  • 青藏高原水土资源时空匹配格局数据与图件(分辨率1km)(2008-2015)

    The Tibetan Plateau in China covers six provinces including Tibet, Qinghai, Xinjiang, Yunnan, Gansu and Sichuan, including Tibet and Qinghai, as well as parts of Xinjiang, Yunnan, Gansu and Sichuan. The research on water and soil resources matching aims to reveal the equilibrium and abundance of water resources and land resources in a certain regional scale. The higher the level of consistency between regional water resources and the allocation of cultivated land resources, the higher the matching degree, and the superior the basic conditions of agricultural production. The general agricultural water resource measurement method based on the unit area of cultivated land is used to reflect the quantitative relationship between the water supply of agricultural production in the study area and the spatial suitability of cultivated land resources. The Excel file of the data set contains the generalized agricultural soil and water resource matching coefficient data of the Tibetan Plateau municipal administrative region in China from 2008 to 2015, the vector data is the boundary data of the Tibetan Plateau municipal administrative region in China in 2004, and the raster data pixel value is the generalized agricultural soil and water resource matching coefficient of the year in the region.

    0 2022-04-19

  • 青藏高原生态资产评估遥感反演植被覆盖度数据

    The basic data set of remote sensing for ecological assets assessment of the Qinghai-Tibet Plateau includes the annual Fraction Vegetation Coverage (FVC), Net Primary Productivity (NPP) and Leaf Area Index (LAI) of the Qinghai-Tibet Plateau since 2000, and other ecological parameters based on remote sensing inversion. The FVC data are mainly developed from MODIS NDVI data. Based on pixel dichotomy model, the vegetation coverage model is developed by using multi-scale remote sensing images, combining with high precision remote sensing parameters such as vegetation community type and distribution characteristics, and the mixed pixel decomposition method is used to construct the vegetation coverage model. All data could be used only after the permission of the data distributor.

    0 2022-04-19

  • 青藏高原300米分辨率土壤侵蚀(水蚀)强度数据集(1992、2005、2015)

    1)The data content includes three stages of soil erosion intensity in Qinghai-Tibet Plateau in 1992, 2005 and 2015, and the grid resolution is 300m. 2) China soil erosion prediction model (CSLE) was used to calculate the soil erosion amount of more than 4,000 investigation units on the Qinghai-Tibet Plateau. Soil erosion was interpolated according to land use on Qinghai-Tibet Plateau. According to the soil erosion classification standard, the soil erosion intensity map of Qinghai-Tibet Plateau was obtained. 3) By comparing the differences of three-stage soil erosion intensity data, it conforms to the actual change law and the data quality is good. 4) The data of soil erosion intensity are of great significance to the study of soil erosion in the Qinghai-Tibet Plateau and the sustainable development of local ecosystems. In the attribute table, "Value" represents the erosion intensity level, from 1 to 6, the value represents slight, mild, moderate, intense, extremely intense and severe. "BL" represents the percentage of echa erosion intensity in the total area.

    0 2022-04-19

  • 青藏高原黄河源区植被覆盖度空间分布图(2015)

    This dataset is a pixel-based maximum fractional vegetation cover map within the Yellow River source region on the Qinghai-Tibet Plateau, with an area of about 44,000 square kilometers. Based on the time series images acquired from MODIS with a resolution of 250 m and Landsat-8 with a resolution of 30 m in 2015 during the vegetation growing season, the data are derived using dimidiate pixel model and time interpolation. The spatial resolution of the image is 30 m, using the WGS 1984 UTM projected coordinate system, and the data is in the format of grid.

    0 2022-04-19

  • 青藏高原灾害统计数据集(1950-2002)

    This data set contains the statistical information of natural disasters in Qinghai Tibet Plateau in the past 50 years (1950-2002), including drought, snow disaster, frost disaster, hail, flood, wind disaster, lightning disaster, cold wave and strong cooling, low temperature and freezing damage, gale sandstorm, insect disaster, rodent damage and other meteorological disasters. Qinghai and Tibet are the main parts of the Qinghai Tibet Plateau. The Qinghai Tibet Plateau is one of the Centers for the formation and evolution of biological species in China. It is also a sensitive area and fragile zone for the international scientific and technological circles to study climate and ecological environment changes. Its complex terrain conditions, high altitude and severe climate conditions determine that the ecological environment is very fragile, It has become the most frequent area of natural disasters in China. The data were extracted from "China Meteorological Disaster Canon · Qinghai volume" and "China Meteorological Disaster Canon · Tibet Volume", which were manually input, summarized and proofread.

    0 2022-04-19