Daily 0.05°×0.05° land surface soil moisture dataset of Qilian Mountain area (2021,SMHiRes,V2)

Daily 0.05°×0.05° land surface soil moisture dataset of Qilian Mountain area (2021,SMHiRes,V2)


This dataset contains daily 0.05°×0.05° land surface soil moisture products in Qilian Mountain Area in 2021. The dataset was produced by utilizing the optimized wavelet-coupled-RF downscaling model (RF-OWCM) to downscale the SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture (SMAP L3, V8). The auxiliary datasets participating in the downscaling model include the MUltiscale Satellite remotE Sensing (MUSES) LAI/FVC product, the daily 1-km all-weather land surface temperature dataset for the Chinese landmass and its surrounding areas (TRIMS LST-TP;) and Lat/Lon information.


File naming and required software

File Naming Convention: YYYYMMDD.tiff (YYYY: year, MM: month, DD: day)
Data Version:V2
Projection:+proj=longlat +datum=WGS84 +no_defs
Data Format: GeoTIFF, 220 rows ×360 columes
Soil Moisture Unit: cm3/cm3
Soil Moisture Valid Range:0.02-0.5
Filled Value:Nodata


Data Citations Data citation guideline What's data citation?
Cite as:

Chai, L., Zhu, Z., Liu, S. (2022). Daily 0.05°×0.05° land surface soil moisture dataset of Qilian Mountain area (2021,SMHiRes,V2). A Big Earth Data Platform for Three Poles, DOI: 10.11888/Terre.tpdc.272375. CSTR: 18406.11.Terre.tpdc.272375. (Download the reference: RIS | Bibtex )

Related Literatures:

1. Hu, Z., Chai, L., Crow, W.T., Liu, S., Zhu, Z., Zhou, J., Qu, Y., Liu, J., Yang, S., Lu, Z., 2022. Applying a Wavelet Transform Technique to Optimize General Fitting Models for SM Analysis: A Case Study in Downscaling over the Qinghai–Tibet Plateau. Remote Sensing 14, 3063. https://doi.org/10.3390/rs14133063( View Details | Bibtex)

2. Qu, Y., Zhu, Z., Montzka, C., Chai, L., Liu, S., Ge, Y., Liu, J., Lu, Z., He, X., & Zheng, J. (2021). Inter-comparison of several soil moisture downscaling methods over the Qinghai-Tibet Plateau, China. Journal of Hydrology, 592, 125616. (https://doi.org/10.1016/j.jhydrol.2020.125616)( View Details | Bibtex)

Using this data, the data citation is required to be referenced and the related literatures are suggested to be cited.


References literature

1.Liu, Q., Wang, L. Z., Qu, Y., Liu, N. F., Liu, S. H., Tang, H. R., and Liang, S. L. (2013) Preliminary Evaluation of the Long-term GLASS Albedo Product, International Journal of Digital Earth, doi: 10.1080/17538947.2013.804601 (View Details )

2.Xiao, Z.Q., Song, J.L., Yang, H., Sun, R., & Li, J. (2022). A 250 m resolution global leaf area index product derived from MODIS surface reflectance data. International Journal of Remote Sensing, 43(4), 1199-1225. (https://doi.org/10.1080/01431161.2022.2039415) (View Details )

3.Liu, J., Chai, L., Dong, J., Zheng, D., Wigneron, J., Liu, S., & Zhou, J. (2021). Uncertainty analysis of eleven multisource soil moisture products in the third pole environment based on the three-corned hat method. Remote Sensing of Environment, 255, 112225. (https://doi.org/10.1016/j.rse.2020.112225) (View Details )

4.Zhang, X., Zhou, J., Göttsche, F., Zhan, W., Liu, S., & Cao, R. (2019). A Method Based on Temporal Component Decomposition for Estimating 1-km All-Weather Land Surface Temperature by Merging Satellite Thermal Infrared and Passive Microwave Observations. IEEE Transactions on Geoscience and Remote Sensing, 57, 4670–4691. https://doi.org/10.1109/TGRS.2019.2892417 (View Details | Download )

5.Xiao, Z.Q., Liang, S.L., Wang, J.D., Chen, P., Yin, X.J., Zhang, L.Q., & Song, J.L. (2014). Use of General Regression Neural Networks for Generating the GLASS Leaf Area Index Product from Time Series MODIS Surface Reflectance. IEEE Transactions on Geoscience and Remote Sensing, vol.52, no.1, pp. 209-223. (https://doi.org/10.1109/TGRS.2013.2237780) (View Details )

6.Xiao, Z.Q., Liang, S.L., Wang, J.D., Xiang, Y., Zhao, X., & Song, J.L. (2016). Long Time-Series Global Land Surface Satellite (GLASS) Leaf Area Index Product Derived from MODIS and AVHRR Data, IEEE Transactions on Geoscience and Remote Sensing, 54(9), 5301-5318. (https://doi.org/10.1109/TGRS.2016.2560522) (View Details )

7.Liu, J., Chai, L., Lu, Z., Liu, S., Qu, Y., Geng, D., & Wang, J. (2019). Evaluation of SMAP, SMOS-IC, FY3B, JAXA, and LPRM soil moisture products over the Qinghai-Tibet Plateau and its surrounding area. Remote Sensing, 11, 792. (https://doi.org/10.3390/rs11070792) (View Details )


Copyright & License

To respect the intellectual property rights, protect the rights of data authors, expand services of the data center, and evaluate the application potential of data, data users should clearly indicate the source of the data and the author of the data in the research results generated by using the data (including published papers, articles, data products, and unpublished research reports, data products and other results). For re-posting (second or multiple releases) data, the author must also indicate the source of the original data.


License: This work is licensed under an Attribution 4.0 International (CC BY 4.0)


Related Resources
Comments

Current page automatically show English comments Show comments in all languages

Download Follow
Keywords
Geographic coverage
East: 107.00 West: 89.00
South: 34.00 North: 45.00
Details
  • Temporal resolution: Daily
  • Spatial resolution: 0.01º - 0.05º
  • File size: 209 MB
  • Views: 1473
  • Downloads: 278
  • Access: Open Access
  • Temporal coverage: 2021-12-31 To 2021-12-31
  • Updated time: 2022-06-10
Contacts
: CHAI Linna   ZHU Zhongli   LIU Shaomin  

Distributor: A Big Earth Data Platform for Three Poles

Email: poles@itpcas.ac.cn

Attachments
Export metadata