中国陆域及周边逐日1km全天候地表温度数据集(TRIMS LST;2000-2021)

地表温度(Land surface temperature, LST)是地球表面与大气之间界面的重要参量之一。它既是地表与大气能量交互作用的直接体现,又对于地气过程具有复杂的反馈作用。因此,地表温度不仅是气候变化的敏感指示因子和掌握气候变化规律的重要前提,还是众多模型的直接输入参数,在许多领域有广泛的应用,如气象气候、环境生态、水文等。伴随地学及相关领域研究的深入和精细化,学术界对卫星遥感的全天候地表温度(All-weather LST)具有迫切的需求。 本数据集的制备方法是一种基于新型地表温度时间分解模型的卫星热红外遥感-再分析数据集成方法。方法的主要输入数据为Aqua MODIS LST产品和GLDAS等数据,辅助数据包括卫星遥感提供的植被指数、地表反照率等。方法充分利用了卫星热红外遥感和再分析数据提供的地表温度高频分量、低频分量以及地表温度的空间相关性,最终重建得到较高质量的全天候地表温度数据集。 评价结果表明,本数据集具有良好的图像质量和精度,不仅在空间上无缝,还与当前学术界广泛采用的逐日1 km Aqua MODIS LST产品在幅值和空间分布上具有较高的一致性。当以MODIS LST为参考时,该数据集在白天和夜间的平均偏差(MBE)为0.08K至0.16K,偏差标准差(STD)为1.12K至1.46K。基于分布于黑河流域、东北、华北和华南地区的15个站点实测数据的检验结果表明,其MBE为-0.06K至-1.17K,RMSE为1.52K至3.71K,且在晴空与非晴空条件下无显著区别。 本数据集的时间分辨率为逐日2次,空间分辨率为1km,时间跨度为2000年-2021年(注:通过外推方式将缺少Aqua MODIS LST产品时段内的全天候地表温度补齐);空间范围包括我国陆域的主要区域(包含港澳台地区,暂不包含我国南海诸岛)及周边区域(72°E-135°E,19°N-55°N)。本数据集的缩写名为TRIMS LST(Thermal and Reanalysis Integrating Moderate-resolution Spatial-seamless LST),以便用户使用。需要说明的是,TRIMS LST的空间子集TRIMS LST-TP(中国西部逐日1 km全天候地表温度数据集(TRIMS LST-TP;2000-2021)V2)同步在国家青藏高原科学数据中心发布,以减少相关用户数据下载和处理的工作量。

典型冰川前端气象数据集(2019-2020)

包括典型冰川(浪卡子县枪勇冰川:东经90.23°,北纬28.88°,海拔4898米,地表覆被为基岩;申扎县甲岗山冰川:东经88.69°,北纬30.82°,海拔5362米,地表覆被为碎石和杂草)2019-2020年自动气象观测数据。枪勇冰川记录包含1.5米温度、1.5米湿度、2米风速、2米风向、地表温度等数据。该自动气象站的数据采用USB离线获取的方式收集,初始记录时间为2019年8月6日19时10分,记录间隔为10分钟,2019年10月24日现场下载数据,未能连接上。2020年12月20日16:30到现场下载数据,仍然无法连接到电脑,于是将数采仪取回带到北京后将数据读出。数据未缺失,但风速数据在2020年7月14日9:30之后有问题(极可能是风向标被破坏所致)。甲岗山冰川初始记录时间为2019年8月9日15时00分,记录间隔为1分钟,电源主要是通过蓄电池和太阳能板来维持。该自动气象站无内部存储,数据每小时通过GPRS上传至HOBO网站,由专人定期下载。2020年1月5日23:34,1.5米温湿度传感器出现异常,温度和湿度数据丢失。2020年6月30日21:20之后所有数据完全无法通过网站下载。2020年12月19日将数采仪取回,下载到2020年6月23日19:43至9月25日3:36的数据。之后更换温湿度传感器,于12月21日12:27重新开始观测。目前数据由三段组成(2019.8.9-2020.6.30;2020.6.23-2020.9.25;2020.12.19-2020.12.29),经检查,数据有部分缺失,个别数据因记录电池电压,时间上有重复,需要核对。甲岗山冰川前端气象观测数据使用美国ONSET 公司HOBO RX3004-00-01型号自动气象站采集,温湿度探头型号为S-THB-M002 ,风速风向传感器型号S-WSET-B ,地温温度传感器型号S-TMB-M006 。枪勇冰川前端气象观测数据使用美国ONSET 公司HOBO U21-USB型号自动气象站采集,温湿度探头型号为S-THB-M002 ,风速风向传感器型号S-WSET-B ,地温温度传感器型号S-TMB-M006 。

全球灌溉农田灌溉用水量遥感估算数据集(2011-2018)

农业灌溉需要消耗大量的可利用淡水资源,是人类对自然水循环过程最直接的扰动,加速了区域水循环的同时伴随着冷却作用。因此,估算灌溉用水对于探索人类活动对自然水循环的影响、量化水资源收支、优化农业水资源管理配置等具有重要意义。然而,目前灌溉用水数据主要是基于调查统计结果,数据空间分布离散且缺乏统一性,无法满足对灌溉用水的时空变化进行估算的需求。全球灌溉农田灌溉用水量遥感估算数据集(2011-2018)是基于卫星土壤湿度、降水、植被指数以及气象资料入辐射与气温等要素,通过土壤水量平衡原理,耦合遥感蒸散发过程模块以及利用基于差分优化的数据-模型融合算法来估算全球灌溉农田实际灌溉用水量。该数据集的灌溉用水估算结果相比传统的离散调查统计数据在不同空间尺度(区域、州/省和国家)上具有较小的偏差,如中国各省2015年农业用水统计结果对比(bias = −3.10 km^3),美国各州2013年调查数据结果对比(bias = −0.42 km^3)以及粮农组织各个国家尺度对比结果(bias = −10.84 km^3)。而且,相较于基于单个降水和土壤水分卫星产品的估算结果,该集合数据显示出更低的不确定性。此外,数据统一采用全球地理经纬度格网,相关元数据存储在对应的NetCDF文件内,空间分辨率约为25公里,时间分辨率为月尺度,时间跨度为2011年−2018年。该数据集将有助于定量评估历史时期农业灌溉用水的时空格局和支撑科学农业用水管理等。