English | 中文
南极数字表面高程模型(DEM)对于人类活动、陆冰形态监测和物质平衡估算具有重要意义。采用新一代激光雷达高度计ICESat-2生成一个新的且具有明确时间戳的南极DEM,该DEM覆盖冰盖和冰架区域。采用2018年11月至2019年11月共计约47亿个ICESat-2观测点,利用时空拟合法估算了南极在500米和1公里分辨率下的表面高程,总体空间分辨率为500米。该方法可以估算74%的南极表面高程,剩下的高程信息通过克里金插值获取。采用美国NASA发布的OIB机载飞行数据进行该DEM的精度验证(之后称之为ICESat-2 DEM)。总体而言,ICESat-2 DEM的平均偏差约为-0.19米,均方根偏差约为10.83米(来自500万个时空匹配的观测点)。ICESat-2 DEM的精度和不确定度与表面坡度和粗糙度有关,在内陆冰盖处有更为可靠的观测结果。ICESat-2 DEM与原有基于卫星高度计、光学像对和雷达干涉测量技术生成的南极DEM具有一定的可比性。ICESat-2 DEM的高精度和明确的时间戳使得其补充了现有的南极DEM数据集并且可以应用于其他科学课题。
For the snow distribution area in China, we prepared a MODIS day-by-day cloud-free snow area dataset with a spatial resolution of 500m from 2000 to 2020 based on the MODIS reflectivity product MOD/MYD09GA, using a decision tree snow discriminant algorithm for different surface types and a vacancy filling algorithm such as a spatiotemporal interpolation algorithm for the hidden Markov random field model. The dataset is stored in HDF5 file format, and each HDF5 file contains 18 data elements, which include data values, data start date, latitude, and longitude. Meanwhile, for a quick preview of snow distribution, the day-by-day file contains snow area thumbnails stored in jpg format. This dataset will be continuously supplemented and improved based on real-time satellite remote sensing data and algorithm updates (currently through December 2020), and will be shared in a fully open sharing format.
数据内容:该数据集产品包含青藏高原地区10米分辨率的不透水面产品,可作为青藏高原地区生态系统相关研究的关键参数。数据来源及加工方法:产品反演主要基于Sentinel系列数据,从联合特征出发,结合深度空间特征、长时序的NDVI等指数特征、地形特征,采用随机森林模型实现不透水面信息提取。数据质量:整体精度较高。数据应用成果及前景:数据集将持续更新,可用于进一步明晰人类活动对青藏高原地区生态系统的影响。
Based on AVHRR-CDR SR products, a daily cloud-free snow cover extent dataset with a spatial resolution of 5 km from 1981 to 2019 was prepared by using decision tree classification method. Each HDF4 file contains 18 data elements, including data value, data start date, longitude and latitude, etc. At the same time, to quickly preview the snow distribution, the daily file contains the snow area thumbnail, which is stored in JPG format. This data set will be continuously supplemented and improved according to the real-time satellite remote sensing data and algorithm update (up to may 2019), and will be fully open and shared.
数据包含珠西沟冰川径流的钾、钠、钙、镁、氟离子、氯离子、硫酸根和硝酸根等指标,涵盖了大部分无机溶解组分。上述阴阳离子分别采用离子色谱和电感耦合等离子光谱仪等仪器测得,检测限低于0.01mg/L,误差低于10%;本数据可以用于反映珠西沟流域硫化物氧化、碳酸盐岩溶解和硅酸盐岩风化等化学风化过程对河水溶质的贡献,进而精准计算碳酸盐岩风化速率和硅酸盐岩风化速率,最终为评估冰川作用对岩石化学风化及其碳汇效应的影响提供科学依据。
冰川是西部山区河流的补给水源,是西部地区人们赖以生存、发展工、农、牧业的最基本要素之一。冰川既是宝贵的淡水资源,又是山区形成严重自然灾害的发源地,如突发性冰湖溃决洪水、冰川泥石流和冰崩等。冰川水文监测是研究冰川融水特征、冰川融水对河流的补给作用、冰川表面消融与径流关系、冰面产流和汇流过程、及冰川和季节性积雪融水诱发的洪水和泥石流计算和预报的基础。目前主要以在流域出山口建立水文监测站,开展实地监测为主。本数集为4条代表性冰川的月值径流数据 (珠西沟冰川、帕隆4号冰川、老虎沟冰川、七一冰川)。通过雷达或压力式水位计测量冰川融水相对水位变化,通过实地径流断面测流与相对水位建立径流曲线,计算每条冰川的径流总量,径流单位为m3/s。
冰川表面微气象是观测冰川表面一定高度处风向风速、气温、湿度、气压、四分量辐射、冰温及降水等气象要素。冰川表面微气象监测是进行冰川监测的重要内容之一,是开展冰川表面能量-物质平衡、冰川运动、冰川融水径流、冰芯等研究及相关模型模拟研究的重要基础数据,为探究气候变化与冰川变化之间的相互关系奠定基础。主要通过在冰川表面架设高山气象站进行自动监测,也可使用便携式气象站进行短期的流动监测。近年来,在天山、西昆仑、祁连山、羌塘内陆、唐古拉山、念青唐古拉、藏东南、横断山和喜马拉雅山地区20多条冰川表面开展了相关的气象监测研究。该数据集为冰川区及冰川末端月值气象数据。
北极大河流域地面气象要素驱动数据集,包括地表日最大、最小及平均气温、日降水量、日均风速共5个要素。数据为NETCDF格式,水平空间分辨率约为0.1度(0.083°),范围包括了Yenisy、Lena、Ob、Yukon及Mackenzie流域,该数据可为北极大河流域水文过程模拟提供驱动数据。利用进一步质量控制的全球历史气候网数据集(GHCN)、全球日气象数据集(GSOD)、美国历史气候网数据集(USHCN)、加拿大气候数据集(AHCCD)、前苏联/俄罗斯气候数据集(USSR/Russia)的气象站点日观测数据,以ClimateNA(北美)、Worldclim(欧亚)数据作为背景场,采用薄板样条函数插值方法生成。
在青海和西藏的荒漠带实地调查了52个样点,于2019年和2020年7-8月植被生长最大时期对植被地上生物量进行实地采样。同时,利用手持 GPS设备,记录了实验位点的经度、纬度和海拔等信息。样方的野外设置方法为:选取一块植被均匀的地段,当植被相对茂盛时样地设置为10米x10米的正方形样地,当植被相对稀疏时样地设置为30米x30米的正方形样地或者30米x90米的长方形样地;在设置好的样地中随机投掷3-5个小样方框(1米x1米),采用样方收割法收集植物样品:在1平方米的样方面积内,登记植物的物种名目,每个物种的株数等信息。并将样方内的各种植物分种齐地面刈割,带回实验室内, 在恒温干燥箱内65℃条件下烘干至恒重, 测定植物样本的干重,计算样方地上生物量。 此外,还通过采样点的经度纬度提取了该52个样点的2种遥感净初级生产力数据。(1) 2000-2018年的增强型植被指数(EVI),并计算年整合增强型植被指数(iEVI),iEVI与净初级生产力(NPP)具有高相关性,可作为净初级生产力的替代指标(He et al. 2021, Science of The Total Environment)。(2) 2001-2020年遥感净初级生产力(NPP)及其质量控制百分比(QC),遥感NPP数据来自MOD17A3HGF Version 6 product (https://lpdaac.usgs.gov/products/mod17a3hgfv006/),由净光合值(总初级生产力-植物维持呼吸)计算得到。植被覆盖度低的样点,遥感净初级生产力可能存在空值(NA)。
青海省湖泊储水总量实测和模拟数据集中包含四个子表:第一个子表是根据遥感影像数据监测得到2000年至2019年的时序湖泊面积数据;第二个子表是结合时序湖泊面积数据和面积-库容方程进行估算的结果;第三个子表存储基于湖泊水下三维模拟模型模拟得到湖泊的面积-容积方程;第四个子表为青海省24个典型湖泊储水量实测和模拟关键参数与结果数据,其中包含每个湖泊的模拟水深、最大水深、模拟时的参考水位与对应的湖泊面积。
数据包括青藏高原与西北干旱区33个湖泊表层沉积物中植物DNA的原始测序文件。我们使用德国Qiagen公司的PowerMax土壤试剂盒提取DNA,并采用通用植物引物g-h (Taberlet et al., 2007) 对样品中叶绿体trnL (UAA) 内含子区的P6环进行PCR扩增,PCR产物随后送至瑞士Fasteris公司进行第二代高通量双端测序,测序仪器为Illumina NextSeq 550。数据质量分数Q30为81.97。
湖泊盐度是湖泊水环境的重要参数,是水资源的重要体现,也是气候变化研究的重要组成部分。本数据基于实测获取的青藏高原湖泊盐度数据,其中盐度以实用盐度单位(psu)进行表征,该盐度值使用电导率传感器测量获得的比电导率(SpC)转换得到。使用Arcgis软件将测量数据转化为空间矢量.shp格式,得到实测盐度空间分布数据文件。该数据可作为地区湖泊环境、水文、水生态、水资源等科学研究的基础数据以及相关研究参考。
火狐浏览器
谷歌浏览器
联系方式
友情链接
帮助信息
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件