Qilian Mountains integrated observatory network: cold and arid research network of Lanzhou university (an observation system of meteorological elements gradient of Linze station, 2018)

This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Linze Station from January 1 to December 31, 2018. The site (100.060° E, 39.237° N) was located on a cropland (maize surface) in the Guzhai Xinghua, which is near Zhangye city, Gansu Province. The elevation is 1400 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4 and 8 m, towards north), wind speed and direction profile (windsonic; 4 and 8 m, towards north), air pressure (1 m), rain gauge (4 m), four-component radiometer (4 m, towards south), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (2 duplicates below the vegetation; -0.05 and -0.1m in south of tower), soil soil temperature/ moisture/ electrical conductivity profile (-0.2 and -0.4m), sunshine duration sensor (4 m, towards south). The observations included the following: air temperature and humidity (Ta_4 m, Ta_8 m; RH_3 m, RH_4 m, RH_8 m) (℃ and %, respectively), wind speed (Ws_4 m, Ws_8 m) (m/s), wind direction (WD_4 m, WD_8 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing long wave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), soil heat flux (Gs_5cm, Gs_10cm) (W/m^2), soil temperature (Ts_5 cm, Ts_10 cm) (℃), soil moisture (Ms_5 cm, Ms_10 cm) (%, volumetric water content), soil water potential(SWP_5cm, SWP_10cm), soil conductivity (Ec_5cm,Ec_10cm) (μs/cm), sun time(h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day.The precipitation and the air humidity data were rejected due to program error. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30.

HiWATER: Multi-scale observation eXperiment on evapotranspiration over heterogeneous land surfaces (MUSOEXE-12)-dataset of flux observation matrix (No.3 eddy covariance system) (2012)

This dataset contains the flux measurements from site No.3 eddy covariance system (EC) in the flux observation matrix from 3 June to 18 September, 2012. The site (100.37634° E, 38.89053° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1543.05 m. The EC was installed at 3.8 m high, and sampled at 10 Hz. The EC was installed at a height of 3.8 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (Gill&Li7500A) was 0.2 m. Raw data acquired at 10 Hz were processed using the Eddypro post-processing software (Li-Cor Company, http://www.licor.com/env/products/ eddy_covariance/software.html), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, angle of attack correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

WATER: Dataset of TIR spectrum observations in the arid region hydrology experiment area and A'rou foci experiment area from Jun to Jul, 2008

The dataset of TIR spectral emissivity was obtained in the arid region hydrology experiment area and A'rou foci experiment area. Observations were by: (1) Spectral emissivity obtained from 102F at 2-25um in cooperation with the handheld infrared thermometer (BNU) for the surface radiative temperature and one au-plating board for downward atmospheric radiation. The radiative transfer equation and TES methods were applied to retrieve emissivity. The grassland and the concrete floor were measured on May, 27, 2008, the wheat field and the maize field at ICBC resort on May, 29, 2008, the concrete floor (multiangle measurements) at ICBC resort on Jun. 3, 2008, the bare soil and the maize leaf in Yingke oasis maize field on Jun. 22, 2008, the maize and wheat canopy in Yingke oasis maize field on Jun. 23, 2008, the rape field in Biandukou experimental area on Jun. 24, 2008, the alfalfa, the saline land, the grassland and the barley land on Jun. 26, 2008, the wheat field and the maize field in Yingke oasis maize field on Jun. 29, 2008, the desert bare land and vegetation (Reaumuria soongorica) in No. 2 Huazhaiai desert plot on Jun. 30, 2008, the rape field and the grassland in Biandukou experimental area on Jul. 6, 2008, and the grassland and the bare land (multiangle) in A'rou experimental area on Jul. 14, 2008. The cold blackbody calibration (*.CBX/*.CBB), the warm blackbody calibration (*.WBX/*.WBB), the ground objects measurements (*.SAX), au-plating board measurements, and the downward atmospheric radiation (*.DWX) were all needed during observation. Moreover, the spectral radiance and emissivity were also archived. The response function of various bands could be acquired by 102F. And then emissivity of 2-25um could be retrieved. Two results of emissivity were developed: one was direct from 102F and the other was retrieved by ISSTES (Iterative spectrally smooth temperature-emissivity separation). Spectral resolution for raw data and proprecessed data was 4cm-1. (2) Spectral emissivity obtained from BOMAN at 2 -13μm in cooperation with the blackbody barrel and the blackbody from Institute of Remote Sensing Applications and the blackbody (BNU). The desert was measured on Jun. 30 and Jul. 1, 2008, A'rou foci experimental area on Jul. 14, 2008, indoor observations on the deep and shallow layer soil, vegetation, small stones, two maize plants from Yingke No.2 (YKYZYMD02) field and one maize plant and bare land from No. 3 (YKYZYMD03)field on on Jul. 16, 2008, Linze experimental area on Jul. 17, 2008, and gobi on Jul. 18, 2008. The sample site, coordinates, time and photos were all archived. During each observation, BOMAN was preheated and the blackbody was set at the predicted target temperature, which would be changed after the infrared radiation of the blackbody was measured by BOMAN. And then the target infrared radiation, the downward atmospheric radiation (reflected by the au-plating board) and the infrared radiation of the blackbody would be measured one by one. Raw data were archived in Igm, and after processed by FTSW500, the result was Rad (radiation). Finally, Rad would be changed into txt files by Matlab programs.

HiWATER: Dataset of Soil respiration observed by Li-8100 in the lower of Heihe River Basin from Jul to Aug , 2014

Soil respiration observation was carried out for the typical vegetation ground in the lower reaches of the Heihe River Basin during the aviation flight experiment in 2014. The observation started on 23 July, 2014 and finished on 2 August, 2014. 1. Observation time Days from 23 July to 2 August, 2014 (25 July, 2014 excepted) 2. Samples and observation methods Large areas with relatively homogeneous vegetation (greater than 100 m * 100 m) were chosen as the observation samples. And combined the flux tower sites distribution of the lower reaches, five field samples closed to the sites were selected The observation sites sampled including Populus and Tamarix mixed forest, Populus, Tamarix group, bare ground and melon quadrats. 3-5 plots were observed for each samples. The PVC soil rings were installed one day before observation and kept about 5 cm out of the ground (the inner diameter of the PVC is 19.5 cm, the outer diameter is 20.0 cm, and the height is 12.0 cm). Minimal the effects to the surface of vegetation and withered matter when install the rings. In order to avoid fluctuations of the soil respiration value by the PVC rings, soil respiration rate was obtained when it returned to its original state (about 24h after the rings install). The observation time for each day was from 8:00 to 12:00 when soil respiration is relatively stable and can represent the whole day in this time. The Li-8100 Open Path soil carbon flux automatic analyzer was used (Model 8100-103) once for each plot. Cycles of observation for all plots of the five samples were completed for every morning. The soil respiration values of the samples were obtain by averaging the values of plots of the samples. 3. Observation instrument Li 8100 4. Data storage The observation recorded data were stored in excel and the original Soil respiration data were stored in 81x files.

Effects of permafrost environment on the construction of Qinghai-Tibet railway and environmental effects data (2002-2004)

The project “The impact of the frozen soil environment on the construction of the Qinghai-Tibet Railway and the environmental effects of the construction” is part of the “Environmental and Ecological Science in West China” programme supported by the National Natural Science Foundation of China. The person in charge of the project is Wei Ma, a researcher at the Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences. The project ran from January 2002 to December 2004. Data collected in this project included the following: Monitoring data of the active layer in the Beiluhe River Basin (1) Description of the active layer in the Beiluhe River Basin (2) Subsurface moisture data from the Beiluhe River Basin, 2002.9.28-2003.8.10 (Excel file) * Site 1 - Grassland moisture data * Site 2 – Removed turf moisture data * Site 3 - Natural turf moisture data * Site 4 - Gravel moisture data * Site 5 - Insulation moisture data (3) Subsurface temperature data from the Beiluhe River Basin, 0207-0408 Excel file * Temperature data for the ballast surface * Temperature data for insulation materials * Temperature data for a surface without vegetation * Temperature data for a grassland surface * Temperature data for a grit and pebble surface Data on the impact of construction on the ecological environment were obtained at Fenghuoshan, Tuotuohe, and Wudaoliang. Sample survey included plant type, abundance, community coverage, total coverage, aboveground biomass ratio and soil structure. The moisture content at different depths of the soil was detected using a time domain reflectometer (TDR). A set of soil samples was collected at a depth of 0-100 cm at each sample site. An EKKO100 ground-penetrating radar detector was used to continuously sample 1-1.5 km long sections parallel to the road to determine the upper limit depth of the frozen soil. 3. Predicted data: The temperature of the frozen soil at different depths and times was predicted in response to temperature increases of 1 degree and 2 degrees over the next 50 years based on initial surface temperatures of -0.5, -1.5, -2.5, -3.5, and -4.5 degrees. 4. The frozen soil parameters of the Qinghai-Tibet Railway were as follows: location, railway mileage, total mileage (km), frozen soil type mileage, mileage of zones with an average temperature conducive to permafrost, frozen soil with high temperatures and high ice contents, frozen soils with high temperatures and low ice contents, frozen soils with low temperatures and high ice contents, frozen soils with low temperatures and low ice contents, and melting area.

WATER: Dataset of ground truth measurement synchronizing with the airborne microwave radiometers (L&K bands) mission in the A'rou foci experimental area (Mar. 19, 2008)

The dataset of ground truth measurement synchronizing with the airborne microwave radiometers (L&K bands) mission was obtained in L2, L4 and L5 of the A'rou foci experimental area on Mar. 19, 2008. The samples were collected every 100 m along the strip from south to north. In L2, the soil temperature, soil volumetric moisture, the loss tangent, soil conductivity, and the real part and the imaginary part of soil complex permittivity were acquired by the POGO soil sensor, the mean soil temperature from 0-5cm by the probe thermometer, and soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). In L4, the soil temperature, soil volumetric moisture, the loss tangent, soil conductivity, and the real part and the imaginary part of soil complex permittivity were acquired by the POGO soil sensor, the mean soil temperature from 0-5cm by the probe thermometer, the surface radiative temperature measured three times by the hand-held infrared thermometer, and soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). In L5, soil volumetric moisture was acquired by ML2X, the mean soil temperature from 0-5cm by the probe thermometer, and soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). Surface roughness was detailed in the "WATER: Surface roughness dataset in the A'rou foci experimental area". Besides, GPR (Ground Penetration Radar) observations were also carried out in L6 and the handheld thermal imager observations in L4. Those provide reliable ground data for retrieval and validation of soil moisture and freeze/thaw status from active remote sensing approaches.