本数据库包括青藏高原坡度、坡向及数字高程模型数据(DEM)。数据来源于地理空间数据云网站下载的分辨率为30m*30m的数值高程模型数据,利用Arcgis软件的表面分析功能,提取出了青藏高原的坡度和坡向信息。该数据经多人复查审核,其数据完整性、位置精度、属性精度均符合标准,质量优良可靠。该数据作为工程地质条件之一,是进行青藏高原重大工程扰动灾害、重大自然灾害的发育规律研究及易发性、危险性及风险分析的基础数据。
祁生文
流域内的水量平衡可以通过单个湖泊的水位波动体现,而区域湖泊水位的一致性波动则可以反映区域有效水分的变化。以往的研究主要通过分析湖泊沉积物的多代用指标来重建过去的有效水分,缺少对区域有效水分变化的定量研究。青藏高原及东中亚地区典型湖泊区域全新世有效水分连续模拟结果数据集是基于湖泊能量平衡模型、湖泊水量平衡模型及瞬态气候演变模型,以构建的虚拟湖泊为载体,连续且定量地展示了青藏高原青海湖、沉错、班公错等以及东中亚地区青土湖、呼伦湖、岱海等湖泊区域全新世有效水分变化。模拟结果为探究千年尺度上湖泊演化过程提供了新的视角。
李育
该数据为2020年西藏26个湖泊70个点位浮游植物数据,采样时间为8-9月,采样方式为常规浮游植物采样方式,样品采集1.5升,后经鲁哥氏液固定,静止沉淀后虹吸浓缩后,利用倒置显微镜镜检结果。数据包括硅藻、绿藻、蓝藻、甲藻、裸藻、隐藻、棕鞭藻、黄藻、褐藻和轮藻等10个门类,共计77种/属不同浮游植物的密度数据。该数据为原始数据,未经过处理,单位为个/L。该数据可以用于表征这些湖泊敞水区浮游植物的组成、丰度,也可用于计算这些湖泊中浮游植物群落的多样性。
张民
冰川物质平衡是表征冰川积累和消融量值的重要冰川学参数之一。冰川物质平衡是联系气候和冰川变化的纽带,是冰川对所在地区气候状况的直接反映。气候变化导致冰川的物质收支状况发生相应的变化,而这种物质上的收支变化又可以引起冰川运动特征及冰川热状况的改变,进而导致冰川末端位置、面积和冰储量的变化。监测方法即在冰川表面设置固定标志花杆,定期监测冰川表面相对于花杆顶点的距离,以计算冰雪消融量;在积累区定时定点开挖雪坑或钻孔取样,测量雪层密度,分析雪-粒雪-附加冰层位特征,计算雪层积累量;再将单点监测结果绘到大比例尺冰川地形图上,按净平衡等值线法或等高线分区法计算整条冰川的瞬时、季节(如冬季和夏季)及年度的物质平衡分量。该数据集为青藏高原及天山地区不同代表性冰川年物质平衡数据,单位为毫米水当量。
邬光剑
冰川是西部山区河流的补给水源,是西部地区人们赖以生存、发展工、农、牧业的最基本要素之一。冰川既是宝贵的淡水资源,又是山区形成严重自然灾害的发源地,如突发性冰湖溃决洪水、冰川泥石流和冰崩等。冰川水文监测是研究冰川融水特征、冰川融水对河流的补给作用、冰川表面消融与径流关系、冰面产流和汇流过程、及冰川和季节性积雪融水诱发的洪水和泥石流计算和预报的基础。目前主要以在流域出山口建立水文监测站,开展实地监测为主。本数集为4条代表性冰川的月值径流数据 (珠西沟冰川、帕隆4号冰川、老虎沟冰川、七一冰川)。通过雷达或压力式水位计测量冰川融水相对水位变化,通过实地径流断面测流与相对水位建立径流曲线,计算每条冰川的径流总量,径流单位为m3/s。
杨威, 李忠勤, 王宁练, 秦翔
湖泊汇集上游流域的径流及其携带的泥沙和营养物质,是流域中物质迁移的重要“归宿”,因此湖泊水体和沉积物属性在很大程度上受湖泊流域的属性(如湖泊上游的气候、地形和植被条件)影响。本数据集根据数字高程模型提取青藏高原上1525个湖泊(面积从0.2到4503平方公里)的流域范围,计算了湖泊水体、地形、气候、植被、土壤/地质和人类活动等6方面的721个属性,是首套青藏高原湖泊流域属性数据集,可为青藏高原湖泊(特别是缺资料湖泊)研究提供基础数据。
刘军志
本数据集是以UEA-CRU与UDEL提供的长时间尺度(1901-2016年)温度计算的冻结指数作为输入数据,通过Stefan经验公式计算雅鲁藏布江流域土壤冻结深度,并插值模拟输出的30年尺度平均土壤冻结深度数据集。本数据集是以UEA-CRU与UDEL提供的长时间尺度(1901-2016年)温度计算的冻结指数作为输入数据,通过Stefan经验公式计算雅鲁藏布江流域土壤冻结深度,并插值模拟输出的30年尺度平均土壤冻结深度数据集。
刘磊, 罗栋梁, 王磊
本数据集为TCA(Triple Collocation Analysis)算法代码集,用于生成2011-2018年全球日尺度土壤水分融合数据。
谢秋霞, 贾立, 胡光成
本数据为青藏高原1:25万重大工程扰动灾害数据。对于灾害解译范围,线路工程(国道、高速、铁路、电网工程)及水电工程,以工程两侧第一分水岭为界;矿山、油田和口岸工程,以距离工程1km为界。工程扰动灾害划分为两类:①由工程建设诱发的滑坡、崩塌、泥石流灾害;②可能影响工程的自然灾害,规定上述解译范围内的所有自然灾害均属于第②类工程扰动灾害。其数据包含滑坡的位置、长、宽、高差、分布高程、成因类型、诱发因素、发生时间、岩性等要素及灾害相关工程及工程建设年份等。依据Google earth影像及1:50万地质图解译全区工程扰动灾害,共解译了6176个灾害点;主要利用Google earth进行扰动灾害解译,同时结合野外考察验证解译结果,利用ArcGIS生成灾害分布图件;数据来源于Google earth高分辨率影像,原始数据精度高,在灾害文件生成过程中严格按照解译规范,并有专人审查,数据质量可靠;依据所收集数据可进行研究区灾害风险分析,为已建工程的顺利运行和未建/在建线路工程的建设提供理论指导。
祁生文
本数据集为青藏高原区域2002-2020年日分辨率0.00425° x0.00425°地表反照率产品。基于MODIS反射率数据,采用耦合地形因子的多源遥感数据协同反演的BRDF\反照率模型,并引入先验知识进行质量控制,反演时空连续的日分辨率的高精度BRDF/反照率。MODIS地表反射率数据(MOD09GA、MYD09GA)集为官方网站下载,以5天为周期合成日分辨率BRDF,进而估算日分辨率的反照率,其中,黑空反照率的太阳入射为当地正午时太阳入射。经过验证评估,满足反照率应用精度要求,相较于同类产品在山区站点的验证精度更高,且时空连续性更好。可有效支撑青藏高原地区辐射平衡、环境变化研究。
游冬琴, 唐勇, 韩源
数据集为中国逐月潜在蒸散发,空间分辨率为0.0083333°(约1km),时间为1990.1-2021.12(将每年更新),单位为0.1mm。该数据集是基于中国1km逐月均温、最低温、最高温数据集(本站已发布,Peng at al. 2019),采用Hargreaves潜在蒸散发计算式得到(Peng at al. 2017)。公式如下: PET = 0.0023 × S0 ×(MaxT − MinT)0.5 ×(MeanT + 17.8), 其中,PET为潜在蒸散发,mm/月;MaxT、MinT、MeanT分别为月最高温、最低温、均温;S0为到达地球大气层顶的理论太阳辐射,根据太阳常数、日地距离、儒略日、赤纬等计算得到。 为便于存储,数据均为int16型存于nc(NETCDF)文件中。nc数据可用ArcMAP软件打开制图,并可用Matlab、R软件提取处理。数据坐标系统建议使用WGS84。
彭守璋
本数据包含国内青藏高原范围内的1:400万精度的断裂数据,属性表字段包括断裂名称、断裂长度、走向、倾向、断层性质、古地震等。该数据来源于地震局,后来通过大量查阅断裂相关的文献,又在原始数据的基础上添加了断裂的活动年代这一属性。原始数据资料精度可靠,并有专人负责质量审查;经多人复查审核,其数据完整性、位置精度、属性精度均符合有关技术规定和标准的要求,质量优良可靠。该断裂数据可为青藏高原区域的一些断裂相关的研究工作提供基础数据支撑。
祁生文
中亚是一个高度农业化的地区,其农业资源有限且非常脆弱。为了评估未来气候变化对中亚农业的潜在影响,我们基于3个全球气候模式的9千米动力降尺度结果生产了一个中亚农业气候指数(agroclimatic indicators)高分辨率预估数据集。这些农业气候指数是生长季长度(growing season length, GSL, days),有效积温(biologically effective degree days, BEDD, ℃),霜冻天数(frost days, FD, days),夏日天数(summer days, SU, days),热浪天数(warm spell duration index, WSDI, days)和热夜天数(tropical nights, TR, days)。时段是1986-2005和2031-2050,空间分辨率为0.1°。由于这些指数(除了WSDI)都是基于温度的绝对阈值定义的,对区域模拟结果的系统偏差非常敏感,我们首先用分位数映射法(quantile mapping, QM)订正了模拟的气温,然后基于订正后的气温计算指数。评估结果显示:QM方法大幅减小了指数的偏差。预估结果显示:GSL,SU,WSDI和TR在整个中亚将显著增大,而FD将显著减小;BEDD的变化具有明显的空间差异性,在中亚北部和山区是增大的,在平原的中部和南部是减小的。这个高分辨率的数据集可被用于评估未来气候变化对中亚农业的风险影响。
邱源
沱沱河源区植被类型图是基于 319 个地面采样点数据结合随机森林(RF)分类方法进行创建的。随机森林分类器的16个输入变量包括了Landsat-8的可见光、短波红外和热红外波段值及其反演的植被指数和地表温度数据等。根据研究区的植被特征及多年冻土模拟的需要,该图对高寒沼泽草甸(alpine swamp meadow)、高寒草甸(alpine meadow)、高寒草原(alpine steppe)和高寒沙漠(alpine desert )等4种植被类型进行了分类。图件的空间分辨率为30 m,可以提供更细节的植被类型的位置信息。
邹德富, 赵林, 刘广岳, 杜二计, 胡国杰, 李智斌, 吴通华, 吴晓东, 陈杰
本数据为东南亚地区2015年的地表类型数据,空间分辨率为30米,数据类型为NetCDF,变量名为“land cover type”。该数据基于FROM-GLC数据加工而成,通过对原始影像的拼接、裁剪得到覆盖东南亚的地表类型数据,剔除东南亚地区不存在的雪冰等下垫面类型并重新整合图例。修改下垫面类型编码生成包含东南亚的地表类型数据。该数据提供耕地、森林、草地、灌木、湿地、水体、不透水面、及裸地共8种下垫面的信息。数据总体精度为71% (Gong et al., 2019),可为水文模型、区域气候模式等提供东南亚地区的下垫面信息。
刘俊国
“一带一路”沿线国家能源供给恢复力反映了沿线国家能源供给恢复力水平,数据值越高,表明沿线国家能源供给恢复力越强。“一带一路”沿线国家能源供给恢复力数据产品制备参考了国际能源署各国能源统计数据(https://www.iea.org/data-and-statistics),利用2000-2019年“一带一路”沿线国家煤炭、石油、天然气供给的逐年数据,在考虑各能源逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了能源供给恢复力产品。
徐新良
人口年龄结构恢复力反映了沿线国家人口年龄结构恢复力水平,数据值越高,表明沿线国家人口年龄结构恢复力越强。人口年龄结构恢复力数据产品制备参考了世界银行统计数据库,利用2000-2019年“一带一路”沿线国家少儿人口(0-14岁)比例、劳动年龄人口(15-64岁)比例、老年人口(65岁及以上)比例(反向指标)3个指标的逐年变化数据,在考虑各指标逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了人口年龄结构恢复力产品。
徐新良
“一带一路”沿线国家人口数量增长恢复力反映了沿线国家人口数量增长恢复力水平,数据值越高,表明“一带一路”沿线国家人口数量增长脆弱性越小,恢复力越强。“一带一路”沿线国家人口数量增长恢复力数据产品制备参考了世界银行统计数据库,利用2000-2019年“一带一路”沿线国家人口数量这一指标的逐年变化数据,在考虑各指标逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了人口数量增长恢复力产品。
徐新良
热融滑塌是由于富冰多年冻土退化而导致的一种类似滑坡的热喀斯特地貌。一旦形成,它们会以较高的速度(几米至几十米每年)溯上坡方向扩张,垮塌的土壤和岩石会流向周边,对基础设施构成威胁,并可能释放冻土中的碳。已有研究表明,热融滑塌广泛地分布于多年冻土区,并且最近十多年它们的数量和影响范围显著增加。青藏工程走廊跨越多年冻土区,是连接内地与西藏的动脉,但已有研究对热融滑塌的分布和影响的认识还十分缺乏。为了对整个青藏工程走廊的热融滑塌进行详细和全面的调查,本研究使用深度学习方法以及目视解译和实地验证,识别并勾勒了2019 年该区域的热融滑塌。使用的高分辨率遥感影像是PlanetScope微小卫星影像,分辨率为 3 米,有4个波段,完全覆盖了整个工程走廊的多年冻土区( 约54,000 平方公里)。该方法结合深度学习的高效性及自动化和人工解译的可靠性,对整个区域进行接近十次的迭代制图,最大程度地避免漏检和误检。目视解译根据其地貌特征和时间变化(2016至2020)检查深度学习算法自动勾绘的热融滑塌。结果中包含 875 个热融滑塌的边界,以及它们的一些属性,包括编号、经纬度、置信概率和时间等信息。该结果为研究青藏工程走廊多年冻土退化以及相应的影响提供了一个重要的基准数据集。
夏卓璇, 黄灵操, 刘琳
采用三种广泛使用的基于模型的蒸散发数据集,包括ERA5,MERRA2和GLDAS2-Noah再分析数据,使用变异系数选取具有高一致性的融合区域,基于可靠性集合平均法融合获得了空间分辨率为0.25°的长序列(1980-2017年)全球逐日蒸散发产品(REA ET)。以GLEAM3.2a和通量塔观测数据作为参考数据和验证数据,结果表明,融合产品很好地捕捉了不同地区的蒸散发趋势,在所有植被覆盖情景下表现良好。数据集以NetCDF格式存储,包含变量E,代表陆地实际蒸散发,以毫米(mm)为单位。数据集包含三个维度:经度、纬度和时间,经度范围为-179.875E~179.875E,纬度范围为-59.875N~89.875N。完整时间覆盖范围为1980年1月1日~2017年12月31日。
陆姣, 王国杰, 陈铁喜, 李世杰, Daniel Fiifi Tawia Hagan, Giri Kattel, 彭建, 姜彤, 苏布达
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件