为研究青藏高原及周边地区主要马属驯化动物的群体演化历史和局部适应遗传机制,并建立相应的种质遗传资源库。我们对在青海省、西藏自治区、新疆自治区采集的青藏高原及周边地区的马属样本进行测序:包括藏家驴、平原家驴等品种。测序包括denove和重测序数据,为追溯该地区主要马属驯化动物的驯化、迁徙、扩张等群体历史事件,并进一步探讨马属动物对缺氧、高寒、干燥等恶劣环境的适应机理提供资料。同时,对家驴各组织进行测序,测序包括HIFI基因组数据、HiC基因组数据,为组装完整的驴的基因组做准备,便于后续分析。
李艳
本数据为锡尔河中游苦盏水文站水文资料。该站为中国气象局乌鲁木齐沙漠气象研究所和塔吉克斯坦国家科学院水问题水能与生态研究所、塔吉克斯坦水文气象局合作建设。该数据可以用于中亚山区水资源评估等科学研究和水利工程等服务。 资料时段:2020年12月5日至2021年9月11日。 资料要素:逐小时流速(m/s)、逐小时水位(m)和逐小时降雨量(m) 站点位置:40°17′38″N, 69°40′18″E,320m 一、300W-QX河流流速、水位观测仪 (一)流速参数: 1供电电压 12(9~27)V(DC) 2工作电流 120(110~135)mA 3工作温度(-40 ~85) °C 4测量范围 (0.15 ~20)m/s 5测量精度 ±0.02m/s 6分辨率 1mm 7探测距离 0.1~50 m 8安装高度0.15~ 25 m 9采样频率 20sps (二)水位参数: 1测量范围 0.5~20 m 2测量精度 ±3 mm 3分辨率 1 mm 4重复性 ±1mm 二、SL3-1翻斗式雨量传感器 1承水口径 ф200mm 2测量降水强度 4mm/min以内 3测量最小分度 0.1mm降水量 4最大允许误差 ±4%mm 三、流速、观测仪数据获取的频率:传感器每隔5S测量一次流速和水位数据 四、小时平均流速计算:小时平均流速和水位数据由一小时内所有每隔5S测量的流速和水位数据取平均计算得出
霍文
本数据为阿姆河上游支流卡菲尼干河水文站水文资料。该站为中国气象局乌鲁木齐沙漠气象研究所和塔吉克斯坦国家科学院水问题水能与生态研究所、塔吉克斯坦水文气象局合作建设。该数据可以用于中亚山区水资源评估等科学研究和水利工程等服务。 资料时段:2020年12月4日至2021年9月4日。 资料要素:逐小时流速(m/s)、逐小时水位(m)和逐小时降雨量(m) 站点位置:37°36′01″N,68°08′01″E,420m 一、300W-QX河流流速、水位观测仪 (一)流速参数: 1供电电压 12(9~27)V(DC) 2工作电流 120(110~135)mA 3工作温度(-40 ~85) °C 4测量范围 (0.15 ~20)m/s 5测量精度 ±0.02m/s 6分辨率 1mm 7探测距离 0.1~50 m 8安装高度0.15~ 25 m 9采样频率 20sps (二)水位参数: 1测量范围 0.5~20 m 2测量精度 ±3 mm 3分辨率 1 mm 4重复性 ±1mm 二、SL3-1翻斗式雨量传感器 1承水口径 ф200mm 2测量降水强度 4mm/min以内 3测量最小分度 0.1mm降水量 4最大允许误差 ±4%mm 三、流速、观测仪数据获取的频率:传感器每隔5S测量一次流速和水位数据 四、小时平均流速计算:小时平均流速和水位数据由一小时内所有每隔5S测量的流速和水位数据取平均计算得出
霍文
1)数据内容: 元素含量及碳氧同位素分析是塔里木盆地中新世古气候重建的重要指标 2)数据来源及加工方法 铁含量:将4g样品放在振动磨中,研末至两百目以下,用液压机将样品压在硼酸之中,最后放在X射线荧光光谱仪中测量。 同位素:样品在40℃下干燥,之后研末至两百目以下,在气源同位质谱仪中与100%磷酸反应,释放CO2气体。 3)数据质量 样品采集、实验处理均按照严格的标准进行,所获数据质量可靠。 4) 数据应用成果及前景 应用这套计划发表SCI论文1篇。
聂军胜
本数据提供了2014-2101青藏高原二氧化碳气体排放数据,数据来源于CMIP6 ScenarioMIP 对比计划,选取了三种未来社会经济共享路径下的二氧化碳排放:SSP126, SSP370, SSP585。对青藏高原格点提取了2014-2101年数据,数据精度为0.9x1.25度。txt文件中包括三列,第一列是纬度,第二列是经度,第三列是年二氧化碳通量,单位为kg m-2 s-1。本数据集提供的青藏高原不同未来情景下二氧化碳排放,可为站点观测,数值模拟提供参考。
吕雅琼
青藏高原东北缘酒西盆地南缘渐新世白杨河组磁化率及色度数据,该数据为实验数据。野外平均采样间距为1m,共获得磁化率和色度数据各437个。磁化率数据采用Bartington MS-2便携式磁化率仪测量;色度数据采用Konica Minolta CM-700分光土色计进行测量。样品采集、前处理以及实验过程均按照严格的标准进行,所获数据质量可靠。结果显示:白杨河组下部磁化率和色度值发生一致且明显的变化。结合剖面地层沉积相的变化特征,认为酒西盆地南缘在白杨河组早期发生了一次气候变化事件。前期大量的地层学、沉积学及热年代学等研究揭示青藏高原东北缘在这一时期没有明显的构造事件,说明该区的气候变化事件可能是由区域气候变化导致的。酒西盆地南缘白杨河组磁化率及色度数据反映的气候信息可为研究青藏高原东北缘古气候提供数据支撑。
戴霜
1)数据内容: 生物标志物数据能够用于重建古气候,本套数据除了重建气候外,还尝试用于重建古海拔,并获得了较好的结果 2)数据来源及加工方法 生物标志物分析:样品经过超声萃取后,通过柱层析分离从而获得甲醇洗脱组分,定容后在LC-MS上机测试分析,得到GDGT数据(数据表述为无纲量的峰面积) 3)数据质量 样品采集、实验处理均按照严格的标准进行,所获数据质量可靠。 4) 数据应用成果及前景 应用这套数据发表SCI论文1篇(Frontiers in Earth Science)。
聂军胜
本数据使用了大量的MODIS遥感影像,基于Google Earth Engine平台对青藏高原2000年至2018年地表植被覆盖情况进分析计算。植被指数(NDVI)是监测地面植被情况的重要指标。Terra中分辨率成像光谱仪(MODIS)植被指数3级产品(MOD13Q1)第6版数据每16天以250米的空间分辨率生成。基于GEE平台计算的年均NDVI指数可以反映出2000-2018年的植被盖度长时间变化趋势。同时,2000-2018多年平均NDVI指数反映了青藏高原地区的空间分布情况。植被指数(NDVI)的时空变化监测对于环境变化研究、可持续发展规划等是不可或缺的重要基础信息和关键参量,有助于理解气候变化背景下一些生态因子(气温、降水)等变化及其产生的影响。
邱海军
本数据集是中巴经济走廊及天山山脉活动断裂带(2013),其中获取的地质图是1:250万地质图,覆盖范围为中巴经济走廊以及天山山脉。地质构造图可以为国民经济信息化提供数字化空间平台,为国家和省级各部门进行区域规划、地质灾害监测、地质调查、找矿勘查、宏观决策等提供信息服务。获取的地质图数据源是首先将纸质版地图扫描,然后在ArcGIS 10.5 平台进行地理配准,然后矢量化获得,存储格式为矢量数据,空间粒度是分区域划分的。
朱亚茹
1)数据内容: 表中包含了大红沟剖面20-5Ma期间的重矿物数据结果以及样品的岩性、采样地层位置和GPS点。重矿物数据分析结果表明柴达木盆地北部大红沟剖面在~19 Ma、11 Ma 和 8 Ma 发生三次阶段性的物源变化,为理解柴达木盆地北部中新世以来物源变化历史提供重矿物数据支撑。 2)数据来源及加工方法 重矿物提取和测试:先将50g样品运用静水沉降法去除细粒(<5 μm)轻矿物,然后运用重液-三溴甲烷通过离心、冷冻和提取三个过程进一步提取出重矿物,最后运用QEMSCAN矿物鉴定技术进行定量鉴定。 3)数据质量 样品采集、实验处理均按照严格的标准进行,所获数据质量可靠。 4) 数据应用成果及前景 应用这套数据发表SCI论文1篇。
聂军胜
本数据集是中巴经济走廊及天山山脉地质构造图,其中获取的地质图是1:250万地质图,覆盖范围为中巴经济走廊以及天山山脉。地质构造图可以为国民经济信息化提供数字化空间平台,为国家和省级各部门进行区域规划、地质灾害监测、地质调查、找矿勘查、宏观决策等提供信息服务。获取的地质图数据源是首先将纸质版地图扫描,然后在ArcGIS 10.5 平台进行地理配准,然后矢量化获得的,存储格式为矢量数据,空间粒度是分区域划分的。
朱亚茹
1)数据内容: 古地磁数据能够建立古地磁年代框架,磁学指标以及地球化学指标能够恢复地质历史时期气候变化,重矿物分析可以用于追踪物源。 2)数据来源及加工方法 数据来源为实验数据。 磁学数据:将野外采集样品用研钵磨成细颗粒装入2x2x2无磁塑料盒内,用卡帕桥磁化率仪、脉冲磁力仪和旋转磁力仪进行测试。 碳同位素数据: 样品在40℃下干燥,之后研末至两百目以下,在气源同位质谱仪中与100%磷酸反应,释放CO2气体。 粒度数据:使用Malvern Mastersizer 2000粒度分析仪分析分解的样品。 在分析前,按照兰州大学的标准程序,用热过氧化氢去除有机物,然后用盐酸去除碳酸盐。 3)数据质量 样品采集、实验处理均按照严格的标准进行,所获数据质量可靠。 4) 数据应用成果及前景 应用这套数据发表SCI论文1篇,为Ni文章。
聂军胜
塔吉克斯坦西帕米尔冰川气象站(38°3′15″N,72°16′52″E,3730m),该站为中国气象局乌鲁木齐沙漠气象研究所和塔吉克斯坦国家科学院水问题水能与生态研究所、塔吉克斯坦水文气象局合作建设。观测数据包括逐时气象要素(风向平均值(°)、内风速平均值(m/s)、风速最大时的风向(°)、风速最大值(m/s)、平均气温(℃)、最高气温(℃)、最低气温(℃)、平均相对湿度(%)、最低相对湿度(%)、平均大气压(hPa)、最高大气压(hPa)、最低大气压(hPa))。 资料时段为2020年12月10日至2021年10月13日 气象观测资料可以为研究西帕米尔山区气候变化、冰川、水资源之间的关系提供重要基础数据,为塔吉克斯坦阿姆河流域下游经济建设提供重要的数据。
霍文
乌郁盆地位于青藏高原南部冈底斯山脉南麓,南邻雅鲁藏布江,是研究青藏高原南部新生代构造活动历史的理想地区。乌郁盆地由下向上依次出露古新世-始新世林子宗群火山岩、渐新世日贡拉组火山岩、中新世芒乡组湖相地层和来庆组火山岩、晚中新世-上新世乌郁组和更新世达孜组。利用LA-ICP-MS共测得5件乌郁盆地芒乡组、乌郁组和达孜组地层砂岩和1件现代乌郁河流砂样品碎屑锆石年龄数据。结果显示芒乡组碎屑锆石年龄集中分布在45-80 Ma范围,乌郁组呈现8-15 Ma的主要年龄区间和45-70 Ma的次要年龄区间,达孜组呈现三个主要年龄区间:45-65 Ma、105-150 Ma和167-238 Ma,现代乌郁河流砂样品呈现8-15 Ma的主要年龄区间和45-65 Ma的次要年龄区间(图1)。所有样品中的晚白垩世-早始新世锆石年龄与冈底斯岩基主要岩浆活动时间一致,乌郁组和现代河流样品中出现的8-15 Ma与来庆组火山岩形成时间一致,达孜组中出现的三叠纪-侏罗纪锆石与盆地北部中拉萨地体岩浆活动时间一致。碎屑锆石年龄谱结果和沉积相分析表明青藏高原南部自印度-欧亚板块碰撞以来发育多期次构造-岩浆活动:(1)古近纪林子宗-日贡拉组火山岩;(2)15 Ma构造-岩浆活动结束盆地芒乡组湖相沉积,并形成来庆组火山岩;(3)8 Ma 构造活动造成来庆组火山岩成为盆地主要物源;(4)2.5 Ma盆地发育辫状河,接受北部中拉萨地体物源。第四纪以来,青藏高原南部地貌格局逐渐形成。
孟庆泉
本数据集包括祁连山地区2021年逐日地表蒸散发产品,产品分辨率为0.01°。采用高斯过程回归(Gaussian Process Regression,GPR)算法,实现对RS-PM (Mu et al., 2011)、SW (Shuttleworth and Wallace., 1985)、PT-JPL (Fisher et al., 2008)、MS-PT (Yao et al., 2013)、SEMI-PM (Wang et al., 2010a)、SIM (Wang et al.2008) 等6种蒸散发产品的集成。参与蒸散发产品生产的驱动数据包括MODIS(NDVI、Albedo、LAI、PAR),MERRA-2气象再分析数据等。
姚云军, 刘绍民, 尚珂
为全面贯彻《科学数据管理办法》中针对“政府预算资金资助形成的科学数据应当按照开放为常态、不开放为例外的原则,由主管部门组织编制科学数据资源目录,有关目录和数据应及时接入国家数据共享交换平台,面向社会和相关部门开放共享,畅通科学数据军民共享渠道”的精神,依据相关汇交标准规范的有关要求,现面向第二次青藏高原综合科学考察研究项目建立本规范。 本规范主要起草单位:中国科学院地理科学与资源研究所。 本规范主要起草人:第二次青藏高原综合科学考察研究任务九项目组。
杨雅萍
日志、影像是野外科考特有的、重要的一手资料,也是科学数据的重要组成部分。为了进一步规范第二次青藏高原综合科学考察研究项目的考察日志、影像资料的收集整理和入库汇交,确保考察日志、影像资料入库的可操作性、条理性、规范性,特制定本技术规范。 本规范规定了考察日志、影像资料收集整理的程序、方法,包括工作准备、野外调查、资料整理等要求,以期能更好的为考察数据资料入库服务。 本规范适用于第二次青藏高原综合科学考察研究项目组织的野外考察调查的日志、影像资料的整理入库,其他野外科考形成的相关资料也可参照本技术规范执行。
杨雅萍
本数据集为祁连山区域2021年的30m土地覆盖分类产品。该产品以2021年的土地覆盖分类产品为基础,基于Google Earth Engine平台的Landsat系列数据和强大地数据处理能力,利用变化检测的思想和方法生产得到,总体精度优于85%。该产品是1985-2020年土地覆盖分类产品的延续。1985-2020年的土地覆盖分类产品也可在本网站下载得到。其中,1985-2015年的土地利用产品为5年1期,2015-2021年的土地利用产品为1年1期。
杨爱霞, 仲波, 角坤升, 吴俊君
本数据集是中巴经济走廊及天山山脉土壤类型图(1971-1981),来源于世界粮农组织(FAO)和谐世界土壤数据库(v1.2),覆盖范围为全球,空间分辨率为0.0833333°。该土壤数据是世界粮农组织与世界土壤信息机构、中国科学院土壤研究所及欧盟委员会联合研究中心合作的结果。统一的世界土壤数据库是一个拥有15000多个不同土壤测绘单元的30弧秒栅格数据库,结合了全世界现有的土壤信息与世界粮农组织的1:5 000 000比例尺世界土壤图(粮农组织,1971-1981)中的信息。该栅格数据库由21600行和43200列组成,并使用标准化的结构将属性数据与栅格地图联系起来,以显示或查询土壤单位的组成和选定的土壤参数的特征。土壤类型图可以为土地利用规划,地质灾害防治和管理等提供基础科学参考。
裴艳茜
本数据集整理和收集了青藏高原及周边地区500米空间分辨率的地表植被类型数据,数据源来自于美国地质调查局(USGS)官网(https://lpdaac.usgs.gov/products/mod12q1v006/),此数据是是MODIS三级数据的土地利用与覆被产品,空间分辨率为500m。通过使用Terra和Aqua反射率数据的监督分类得到的。通过将平滑样条应用于天底双向反射率分布函数(BRDF)-调整后的反射(NBAR)时间序列,第6版MCD1201产品开发出新的缺口填充光谱时间特征。而且,第6版产品还使用了隐马尔可夫模型(HMM),可减少类别标签中的虚假变化。该数据集中包含了17个主要土地覆盖类型,根据国际地圈生物圈计划(IGBP),其中包括11个自然植被类型,3个土地开发和镶嵌的地类和3个非草木土地类型定义类。其分别为:1-常绿针叶林;2-常绿阔叶林;3-落叶针叶林;4-落叶阔叶林;5-混交林;6-稠密灌丛;7-稀疏灌丛;8-木本稀树草原;9-稀树草原;10-草地;11-永久湿地;12-农用地;13-城市和建筑区;14-农用地/自然植被拼接;15-雪和冰;16-裸地;17-水。
邱海军
中巴经济走廊及天山山脉区域属于亚热带草原、沙漠气候和暖温带大陆性干旱气候,河流降水补给较少,北部山区河流补给为冰川积雪融水补给。地处印度河流域,印度河上游水系发达,有印度河干流、左岸西部杰赫勒姆河和奇纳布河等。本数据集是青藏高原水系图。水系是一种重要的自然要素,它的发育、形态及分布是多种因素综合作用的结果。河流的分类是依据水系最典型特征而进行的,因而水系的编码充分考虑了水系的分类,并兼顾河水的其他特性。国外河流数据来源于Natural Earth,所有的河流都接受了人工平滑和位置调整,以适应SRTM Plus高程数据生成的阴影地形。
邱海军
该数据为青藏高原区域的土地覆盖数据,空间分辨率为300米,时间分辨率为年,数据包括1995、2005和2015年3个时期。该数据为栅格格式(Tiff),采用2000国家大地坐标系,可以使用ArcGIS、ENVI等软件工具打开。原始数据来自欧洲哥白尼气候变化服务数据中心,该数据参照联合国粮食及农业组织开发的“土地覆被分类系统”,将全球土地覆被类型分为22类。由于其高精度、一致性以及年度更新的特征,该数据已经在全球范围内的土地利用和人类活动变化监测等领域得到了广泛应用。本数据在原始数据的基础上,在ArcGIS中经裁剪、投影、精度验证获得,并经过第二人进行质量审核,数据质量可靠。
杨雅萍
青藏高原2018-2019年1km分辨率逐月气象数据集时间为2018年1月-2019年12月。原始数据来自地球陆地表面高分辨率气候学数据(CHELSA, Climatologies at high resolution for the earth’s land surface areas),经过空间校正、精度验证和裁剪等得到1km分辨率降水量、风速、气温、湿度数据。 数据可用ArcGIS、ENVI或其他地理信息系统和遥感软件打开使用。
杨雅萍
该数据为青藏高原1:400万地貌类型数据,地貌图可以表达地貌研究的成果,又是研究地貌的重要方法,对地貌学有着重要的作用,对地貌研究的不断发展有着重要的作用。数据包括两个部分,shp数据来源于中国1:400万形态地貌图,空间范围在中国境内;栅格数据来源于USGS(https://rmgsc.cr.usgs.gov/outgoing/ecosystems/Global/),空间范围扩展到了青藏高原及毗邻山区,包括部分境外区域。矢量数据由1:400万形态地貌图,经扫描配准,并矢量数字化,数字化时精度保证在2个象元以内,栅格数据经过空间校准、精度验证和裁剪得到,详细的数据加工处理过程可见https://onlinelibrary.wiley.com/doi/full/10.1111/tgis.12265。
杨雅萍
中巴经济走廊及天山山脉地形数据由日本宇宙航空研究所(Japan Aerospace Exploration Agency,简称JAXA)生产。中巴经济走廊及天山山脉30m数字高程模型(DEM)(2006-2011)描述的是地面高程信息,其是研究分析地形、流域、地物识别的重要原始资料。它在测绘、水文、水文、气象、地貌、地质、土壤、工程建设等国民经济以及人文和自然科学领域有着广泛的应用。在防洪减灾方面,DEM是进行水文分析如汇水区分析、水系网络分析、降雨分析、蓄洪计算、淹没分析等的基础;同时,DEM数据能够反映一定分辨率的局部地形特征,通过DEM可提取大量的地表形态信息,可用于绘制等高线、高程图、坡度图、坡向图、水系图、立体透视图、立体景观图,并应用于制作正射影像、立体地形模型与地图修测。该数据水平分辨率为30m(1弧秒),高程精度5米,是目前世界上最精确的地形数据之一。该数据下载地址为https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/。
邱海军
该数据为喜马拉雅山区流域所在喜马拉雅山区1:25万地形数据,由STRM90m高程数据实体在ARCGIS软件中按喜马拉雅山区边界掩膜提取得到,为90M栅格分辨率。由于DEM描述的是地面高程信息,它在测绘、水文、气象、地貌、地质、土壤、工程建设、 通讯、军事等国民经济和国防建设以及人文和自然科学领域有着广泛的应用。在防洪减灾方面,DEM是进行水文分析如汇水区分析、水系网络分析、降雨分析、蓄洪计算、淹没分析等的基础。
王中根
深反射地震剖面测线沿线构造地质剖面(多格错仁-鲸鱼湖段,全长约200 km)(比例尺1:10万)。该段剖面的主要绘制依据是反射剖面测线沿线的野外地质调查和测线所在区域的1:25万区域地质图,结合野外产状数据以及1:25万区域地质图数据用CorelDraw等软件绘制了该构造地质剖面。以1:10万的比例尺绘制的地质构造剖面可以大致反应出反射剖面沿线的地质结构、构造特征。地质构造剖面获得的几何结构信息可为后期深反射地震剖面的构造解译和平衡剖面制作提供浅层的结构约束。
郭晓玉
该数据为川藏线及周边地区1:25万社会经济数据,包含GDP、人口等数据。人口和GDP是社会经济发展、区域规划和资源环境保护的重要指标之一,通常以行政区为基本统计单元。人口和GDP空间化以空间统计单元代替传统的行政统计单元,为多领域之间数据共享、进行空间统计分析带来极大便利。数据来源于资源环境科学与数据中心中国人口和GDP空间分布公里网格数据集。由资源环境科学与数据中心中国人口和GDP空间分布公里网格数据集按川藏铁路沿线及周边地区范围裁剪得到。数据为栅格格式,精确至每平方公里,适用于川藏线及周边地区,人口和GDP是社会经济发展、区域规划和资源环境保护的重要指标之一。
王中根
本数据集整理和收集了川藏铁路沿线及周边地区实测和调查最大24H降雨量点数据。含有流域KID、station、省份、X坐标、Y坐标、rain、date等字段数据。共计43条记录。数据来源:《中国暴雨统计参数图集》(2006版)。加工方法:将中国暴雨统计参数图集(2006版)实测和调查最大24H降雨量点数据在川藏铁路沿线及周边地区范围内的点人工数字化。数据集内还包含了川藏铁路沿线评估区域内所有子流域单元的十年、二十年、百年一遇最大24h降水值(1950s-2010s),根据评估区域内逐年最大24h降水序列进行频率计算得到。加工过程中,规定操作人员严格遵守操作规范,同时由专人负责质量审查。经多人复查审核,其数据完整性、逻辑一致性、位置精度、属性精度、接边精度、现势性均符合国家测绘局制定的有关技术规定和标准的要求,质量优良可靠。
王中根
川藏铁路沿线洪水风险评估数据,包括自然指标、危险性、脆弱性和风险评估数据。数据来源:从地球大数据科学工程网站获取;根据USGS下载的DEM计算获取。加工方法:五年一遇最大24h降水通过根据评估区域内逐年最大24h降水序列进行频率计算获得;河网指数根据评估区域内海河版六级水网裁剪并处理获得;危险性将五年一遇最大24h降水和河网指数赋值计算获取;脆弱性将人口密度、交通造价、GDP总量数据赋权计算获得;风险数据根据危险性和脆弱性赋权计算获得。制定数字加工操作规范。加工过程中,规定操作人员严格遵守操作规范,同时由专人负责质量审查。经多人复查审核,其数据完整性、逻辑一致性、位置精度、属性精度、接边精度、现势性均符合国家测绘局制定的有关技术规定和标准的要求,质量优良可靠。
王中根
本数据根据1840-2019重大山洪灾害案例汇编,是川藏铁路沿线的山洪灾害调查数据,包括了时间、地点、灾害类型、成因、经度、纬度、降雨量、铁路段和灾害损失信息。根据2006版的《中国历史大洪水资料调查汇编》、《全国山洪灾害防治项目(2013-2015年)》四川省和西藏自治区山洪灾害调查成果及实地调查等不同数据源的特点对原始资料进行真实性、一致性的检查及规范化处理;然后根据数据源及资料进行分析,整理归纳;最后,运用SuperMap软件进行处理等。
王中根
本数据集根据青藏高原1:25万三级流域分区河流水系数据(2012年)按川藏线及周边地区范围掩膜提取得到,为矢量数据。地理坐标系:GCS_China_Geodetic_Coordinate_System_2000;空间精度:比例尺1:25万。数据可用ArcGIS、ENVI或其他地理信息系统和遥感软件打开使用。水系可用来划分小流域,确定流域面积,计算水系的特征参数如河网密度、河系发育系数、河系不均匀系数等,在水文学领域具有重要作用。
王中根
中国区域PML-V2水碳耦合的陆地蒸散发与总初级生产力数据集,即PML-V2(China),包括总初级生产力(gross primary product, GPP),植被蒸腾(vegetation transpiration, Ec),土壤蒸发(soil evaporation, Es),冠层截流蒸发(vaporization of intercepted rainfall, Ei)和水体、冰雪蒸发(ET_water),共5个要素。数据格式为TIFF,时空分辨率为1天、500米,时间跨度为2000.02.26-2020.12.31。 与全球版本相比,PML-V2(China)产品在中国区域的模拟精度有很大的提升,且具有以下改进和创新: i. 相较于全球版本的八天分辨率,新产品的时间分辨率升至每日; ii. 观测数据来自中国26个涡动通量站,其下垫面包括植被稀疏的荒漠在内的9种植被功能型,并用于模型的参数校准(用于率定全球版产品的中国站点仅有8个,只覆盖5种植被类型); iii. 2000-2018年使用0.1°的中国区域气象要素驱动数据,2019-2020年使用偏差校正的全球陆面数据同化系统GLDAS-2.1气象数据,这些气象输入数据用来替换原先0.25°的GLDAS输入; iv. 使用ERA5陆地的地表温度取代空气温度作为输入,用于计算输出长波辐射; v. 将改进的Whittaker滤波的MODIS叶面积指数作为模型输入,新产品在监测作物耗水量和揭示种植制度特征方面提供了新的见解。 注:本数据集不包含中国南海部分。
张永强, 何韶阳
青藏高原是亚洲众多主要河流的源头,为亿万人口提供生活必需的水源,被称为“亚洲水塔”。亚洲水塔的主要补给水源为青藏高原地区的降水,其中高原低涡是青藏高原上重要的降水系统之一。由于青藏高原地形复杂、观测资料匮乏,对高原低涡的气候和结构特征及其形成和变化机制的认识仍然存在很多不足之处。本数据集利用多套再分析资料和高原低涡的客观识别方法,得到了一套长时间序列高原低涡数据集,包括高原低涡的位置、半径、强度、生命史和移动路径等特征,本数据集可用于高原低涡的气候特征分析、高原低涡对降水影响、高原低涡生成发展和移出机制研究等。数据集使用的再分析数据有:NCEP1(NCEP/NCAR),NCEP2(NCEP/DOE),ERA-Interim,ERA-40,ERA-5,CFSR,MERRA2,JRA55,NCEP FNL,CRA40等共10套再分析数据,其中NCEP1和NCEP2的分辨率较低,得到的高原低涡不适用作为气候特征分析。
林志强, 郭维栋
该数据集包含2021年1月9日至2021年12月31日疏勒河流域兰州大学寒旱区科学观测网络瓜州站的物候相机观测数据,观测点的经纬度是95.673E,41.405N,海拔2014m。该数据使用北京师范大学自主研发的软件包进行处理。该物候相机采用向下的方式采集数据,拍摄数据分辨率为2592*1944,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(GCC)。该站点物候相机于2021年8月10日调整过拍摄角度。
赵长明, 张仁懿
该数据集包含2021年1月1日至2021年12月31日柴达木盆地哈尔腾河流域兰州大学寒旱区科学观测网络苏干湖站的物候相机观测数据,观测点的经纬度是94.125°E,38.992N,海拔2798m。该数据使用北京师范大学自主研发的软件包进行处理。该物候相机采用向下的方式采集数据,拍摄数据分辨率为2592*1944,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(GCC)。该站点物候相机于2021年8月12日调整过拍摄角度。
赵长明, 张仁懿
该数据集包含2021年2月1日至2021年9月15日黑河流域兰州大学寒旱区科学观测网络寺大隆站的物候相机观测数据,观测点的经纬度是99.926E,38.428N,海拔3146m。该数据使用北京师范大学自主研发的软件包进行处理。该物候相机采用向下的方式采集数据,拍摄数据分辨率为2592*1944,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(GCC)。
赵长明, 张仁懿
该数据集包含2021年3月1日至2021年12月31日石羊河流域兰州大学寒旱区科学观测网络民勤站的物候相机观测数据,观测点的经纬度是103.668E,39.208N,海拔1020m。该数据使用北京师范大学自主研发的软件包进行处理。该物候相机采用向下的方式采集数据,拍摄数据分辨率为2592*1944,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(GCC)。
赵长明, 张仁懿
该数据集包含2021年1月1日至2021年12月31日大通河流域兰州大学寒旱区科学观测网络连城站的物候相机观测数据,观测点的经纬度是102.737E,36.692N,海拔2903m。该数据使用北京师范大学自主研发的软件包进行处理。该物候相机采用向下的方式采集数据,拍摄数据分辨率为2592*1944,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(GCC)。
赵长明, 张仁懿
该数据集包含2021年1月1日至2021年12月31日石羊河流域兰州大学寒旱区科学观测网络西营河站的物候相机观测数据,观测点的经纬度是101.855E,37.561N,海拔3616m。该数据使用北京师范大学自主研发的软件包进行处理。该物候相机采用向下的方式采集数据,拍摄数据分辨率为2592*1944,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(GCC)。
赵长明, 张仁懿
该数据集包含了2021年1月11日至2021年12月27日的兰州大学寒旱区科学观测网络连城站涡动相关仪观测数据,该站由于设备损坏,本年度数据缺失严重。站点位于甘肃永登连城吐鲁沟国家森林公园吐鲁坪,下垫面为森林。观测点的经纬度是102.737E,36.692N,海拔2903m。涡动相关仪的架高4m,采样频率是10Hz,超声朝向是正北向,超声风速温度仪(CSAT3)与CO2/H2O分析仪(Li7500A)之间的距离是17cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wind(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(较插补数据好);9数据质量差)。数据时间的含义,如0:30代表0:00-0:30的平均。
赵长明, 张仁懿
该数据集包含了2021年1月1日至2021年12月27日的兰州大学寒旱区科学观测网络瓜州站涡动相关仪观测数据。站点位于甘肃酒泉瓜州县柳园镇,下垫面是荒漠。观测点的经纬度是95.673E,41.405N,海拔2014m。涡动相关仪的架高4m,采样频率是10Hz,超声朝向是正北向,超声风速温度仪(CSAT3)与CO2/H2O分析仪(Li7500A)之间的距离是17cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wind(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(较插补数据好);9数据质量差))。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。
赵长明, 张仁懿
该数据集包含了2021年1月1日至2021年12月27日的兰州大学寒旱区科学观测网络苏干湖站涡动相关仪观测数据。站点位于甘肃苏干湖,下垫面是湿地。观测点的经纬度是94.12E,38.99N,海拔2823m。涡动相关仪的架高4m,采样频率是10Hz,超声朝向是正北向,超声风速温度仪(CSAT3)与CO2/H2O分析仪(Li7500A)之间的距离是17cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wind(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(较插补数据好);9数据质量差))。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。
赵长明, 张仁懿
该数据集包含了2021年1月1日至2021年12月19日兰州大学寒旱区科学观测网络寺大隆站涡动相关仪观测数据。站点位于甘肃永登寺大隆吐鲁沟国家森林公园吐鲁坪,下垫面是森林。观测点的经纬度是99.926E,38.428N,海拔3146m。涡动相关仪的架高高于冠层4m,采样频率是10Hz,超声朝向是正北向,超声风速温度仪(CSAT3)与CO2/H2O分析仪(Li7500A)之间的距离是17cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wind(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(较插补数据好);9数据质量差))。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。
赵长明, 张仁懿
该数据集包含了2021年1月1日至2021年12月27日的兰州大学寒旱区科学观测网络西营河站涡动相关仪观测数据。站点位于青海海北门源县仙米乡讨拉村,下垫面是高寒草甸。观测点的经纬度是101.855E,37.561N,海拔3616m。涡动相关仪的架高4m,采样频率是10Hz,超声朝向是正北向,超声风速温度仪(CSAT3)与CO2/H2O分析仪(Li7500A)之间的距离是17cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。9.10-10.22日数据缺失。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wind(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(较插补数据好);9数据质量差))。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。
赵长明, 张仁懿
该数据集包含了2021年1月1日至2021年12月27日的兰州大学寒旱区科学观测网络民勤站涡动相关仪观测数据。站点位于甘肃省武威市民勤县,地处中国西部地区巴丹吉林沙漠和腾格里沙漠之间。观测点的经纬度是103.668E,39.208N,海拔1020m。涡动相关仪的架高4m,采样频率是10Hz,超声朝向是正北向,超声风速温度仪(CSAT3)与CO2/H2O分析仪(Li7500A)之间的距离是17cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wind(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(较插补数据好);9数据质量差))。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。
赵长明, 张仁懿
该数据集包含了2021年1月1日至2021年12月31日兰州大学寒旱区科学观测网络西营河站气象要素梯度观测系统数据。站点位于甘肃武威西营镇,下垫面是高寒草甸。观测点的经纬度是101.853E,37.561N,海拔3614m。二维超声风速/风向传感器和空气温湿度传感器分别架设在2m、4m、8m处,共3层,朝向正北;气压计安装在1.5m采集箱内;翻斗式雨量计安装在塔4m处;红外温度计安装在4m处,朝向正南,探头朝向垂直向下;土壤热通量板(自校正式)(2块)依次埋设在塔南侧植被下5cm和10cm处;土壤温/湿/电导率传感器和土壤水势传感器埋设在塔南侧植被下5cm、20cm和40cm处;光合有效辐射传感器、日照时数传感器以及四分量辐射仪安装在4m处,朝向正南。 观测项目有:风速(WS_1_2_1、WS_1_4_1、WS_1_8_1)(单位:米/秒)、风向(WD_1_2_1、WD_1_4_1、WD_1_8_1)(单位:度)、空气温湿度(Ta_1_2_1、Ta_1_4_1、Ta_1_8_1和RH_1_2_1、RH_1_4_1、RH_1_8_1)(单位:摄氏度、百分比)、气压(PA_1_1_1)(单位:百帕)、降水量(P_1_4_1)(单位:毫米)、四分量辐射(SWIN_1_4_1、SWOUT_1_4_1、LWIN_1_4_1、LWOUT_1_4_1、RN_1_4_1)(单位:瓦/平方米)、地表辐射温度(TC_1_4_1)(单位:摄氏度)、土壤热通量(SHF_1_5_1、SHF_1_10_1)(单位:瓦/平方米)、土壤水分(SWC_1_5_1、SWC_1_20_1、SWC_1_40_1)(单位:百分比)、土壤温度(TS_1_5_1、TS_1_20_1、TS_1_40_1)(单位:摄氏度) 、土壤水势(SWP_1_5_1、SWP_1_20_1,SWP_1_40_1)(单位:千帕)、土壤电导率(EC_1_5_1、EC_1_20_1、EC_1_40_1)(单位:微西门子/厘米)、光合有效辐射(PPFD_1_4_1)(单位:微摩尔/平方米秒)、日照时数(Sun_time_1_4_1)(单位:小时)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min);缺失或异常数据用-6999代替;2021.1.1-2021.7.23日,大气压传感器故障,该位置大气压数据错误;2021.9.15-2021.12.31日,20cm土壤三参数传感器故障,该位置土壤三参数数据错误;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2021-6-10 10:30。
赵长明, 张仁懿
该数据集包含了2021年1月1日至2021年12月31日兰州大学寒旱区科学观测网络苏干湖站气象要素梯度观测系统数据。站点位于甘肃苏干湖,下垫面是湿地。观测点的经纬度是94.125E,38.992N,海拔2823m。二维超声风速/风向传感器和空气温湿度传感器分别架设在4m、8m处,朝向正北;气压计安装在1m采集箱内;翻斗式雨量计安装在塔4m处;红外温度计安装在4m处,朝向正南,探头朝向垂直向下;土壤热通量板(自校正式)(2块)依次埋设在塔南侧植被下5cm和10cm处;土壤温/湿/电导率传感器和土壤水势传感器埋设在塔南侧植被下10cm、20cm和40cm处;光合有效辐射传感器、日照时数传感器以及四分量辐射仪安装在4m处,朝向正南。 观测项目有:风速(WS_1_4_1、WS_1_8_1)(单位:米/秒)、风向(WD_1_4_1、WD_1_8_1)(单位:度)、空气温湿度(Ta_1_4_1、Ta_1_8_1和RH_1_4_1、RH_1_8_1)(单位:摄氏度、百分比)、气压(PA_1_1_1)(单位:百帕)、降水量(P_1_4_1)(单位:毫米)、四分量辐射(SWIN_1_4_1、SWOUT_1_4_1、LWIN_1_4_1、LWOUT_1_4_1、RN_1_4_1)(单位:瓦/平方米)、地表辐射温度(TC_1_4_1)(单位:摄氏度)、土壤热通量(SHF_1_5_1、SHF_1_5_1)(单位:瓦/平方米)、土壤水分(SWC_1_10_1、SWC_1_20_1、SWC_1_40_1)(单位:百分比)、土壤温度(TS_1_10_1、TS_1_20_1、TS_1_40_1)(单位:摄氏度) 、土壤水势(SWP_1_10_1,SWP_1_20_1、SWP_1_40_1)(单位:千帕)、土壤电导率(EC_1_10_1,EC_1_20_1、EC_1_40_1)(单位:微西门子/厘米)光合有效辐射(PPFD_1_4_1)(单位:微摩尔/平方米秒)、日照时数(Sun_time_1_4_1)(单位:小时)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min);缺失或异常数据用-6999代替;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2021-6-10 10:30。
赵长明, 张仁懿
该数据集包含了2021年1月1日至2021年12月31日兰州大学寒旱区科学观测网络寺大隆站气象要素梯度观测系统数据。站点位于甘肃张掖市肃南县康乐乡,下垫面是森林。观测点的经纬度是99.926E,38.428N,海拔3146m。二维超声风速/风向传感器和空气温湿度传感器分别架设在1m、2m、13m、24m、48m处,共5层;气压计安装在1.5m采集箱内;翻斗式雨量计安装在塔24m处;两个红外温度计分别安装在4m(冠层下)、24m(冠层下)处,探头朝向垂直向下;土壤热通量板(自校正式)(2块)依次埋设在植被下5cm和10cm处;土壤温/湿/电导率传感器和土壤水势传感器埋设在塔南侧植被下5cm、10cm、20cm、40cm和60cm处;光合有效辐射传感器分别安装在4m(冠层下)、30m(冠层下)处;日照时数传感器以及四分量辐射仪安装在30m处。 观测项目有:风速(WS_1_1_1、WS_1_2_1、WS_1_13_1、WS_1_24_1、WS_1_48_1)(单位:米/秒)、风向(WD_1_1_1、WD_1_2_1、WD_1_13_1、WD_1_24_1、WD_1_48_1)(单位:度)、空气温湿度(Ta_1_1_1、Ta_1_2_1、Ta_1_13_1、Ta_1_24_1、Ta_1_48_1和RH_1_1_1、RH_1_2_1、RH_1_13_1、RH_1_24_1、RH_1_48_1)(单位:摄氏度、百分比)、气压(PA_1_1_1)(单位:百帕)、降水量(P_1_24_1)(单位:毫米)、四分量辐射(SWIN_1_30_1、SWOUT_1_30_1、LWIN_1_30_1、LWOUT_1_30_1、RN_1_30_1)(单位:瓦/平方米)、地表辐射温度(TC_1_4_1、TC_1_30_1)(单位:摄氏度)、土壤热通量(SHF_1_5_1、SHF_1_10_1)(单位:瓦/平方米)、土壤水分(SWC_1_5_1、SWC_1_10_1、SWC_1_20_1、SWC_1_40_1、SWC_1_60_1 (单位:百分比)、土壤温度(TS_1_5_1、TS_1_10_1、TS_1_20_1、TS_1_40_1、TS_1_60_1)(单位:摄氏度) 、土壤水势(SWP_1_5_1、SWP_1_10_1、SWP_1_20_1、SWP_1_40_1、SWP_1_60_1)(单位:千帕)、土壤电导率(EC_1_5_1、EC_1_10_1、EC_1_20_1、EC_1_40_1、EC_1_60_1)(单位:微西门子/厘米)、光合有效辐射(PPFD_1_4_1、PPFD_1_30_1)(单位:微摩尔/平方米秒)、日照时数(Sun_time_1_30_1)(单位:小时)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min);缺失或异常数据用-6999代替;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2021-6-10 10:30。
赵长明, 张仁懿
该数据集包含了2021年1月1日至2021年12月31日兰州大学寒旱区科学观测网络民勤站气象要素梯度观测系统数据。站点位于甘肃省武威市民勤县,地处中国西部地区巴丹吉林沙漠和腾格里沙漠之间。观测点的经纬度是103.668E,39.208N,海拔1020m。二维超声风速/风向传感器和空气温湿度传感器分别架设在4m、8m处,共2层,朝向正北;气压计安装在1.5m采集箱内;翻斗式雨量计安装在塔4m处;红外温度计安装在4m处,朝向正南,探头朝向垂直向下;土壤热通量板(自校正式)(2块)依次埋设在塔南侧植被下5cm和10cm处;土壤温/湿/电导率传感器和土壤水势传感器埋设在塔南侧植被下10cm和20cm处;光合有效辐射传感器、日照时数传感器以及四分量辐射仪安装在4m处,朝向正南。 观测项目有:风速(WS_1_4_1、WS_1_8_1)(单位:米/秒)、风向(WD_1_4_1、WD_1_8_1)(单位:度)、空气温湿度(Ta_1_4_1、Ta_1_8_1和RH_1_4_1、RH_1_8_1)(单位:摄氏度、百分比)、气压(PA_1_1_1)(单位:百帕)、降水量(P_1_4_1)(单位:毫米)、四分量辐射(SWIN_1_4_1、SWOUT_1_4_1、LWIN_1_4_1、LWOUT_1_4_1、Rn_1_4_1)(单位:瓦/平方米)、地表辐射温度(TC_1_4_1)(单位:摄氏度)、土壤热通量(SHF_1_5_1、SHF_1_5_1)(单位:瓦/平方米)、土壤水分(SWC_1_10_1、SWC_1_20_1)(单位:百分比)、土壤温度(TS_1_10_1、TS_1_20_1)(单位:摄氏度) 、土壤水势(SWP_1_10_1,SWP_1_20_1)(单位:千帕)、土壤电导率(EC_1_10_1、EC_1_20_1)(单位:微西门子/厘米)、光合有效辐射(PPFD_1_4_1)(单位:微摩尔/平方米秒)、日照时数(Sun_time_1_4_1)(单位:小时)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min);缺失或异常数据用-6999代替;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2021-6-10 10:30。
赵长明, 张仁懿
该数据集包含了2021年1月1日至2021年12月31日兰州大学寒旱区科学观测网络临泽站气象要素梯度观测系统数据。站点位于甘肃张掖临泽新华镇古寨村,下垫面是农田。观测点的经纬度是100.062E,39.238N,海拔1402m。二维超声风速/风向传感器和空气温湿度传感器分别架设在4m、8m处,共2层,朝向正北;气压计安装在1m采集箱内;翻斗式雨量计安装在塔4m处;红外温度计安装在4m处,朝向正南,探头朝向垂直向下;土壤热通量板(自校正式)(2块)依次埋设在塔南侧植被下5cm和10cm处;土壤温/湿/电导率传感器和土壤水势传感器埋设在塔南侧植被下5cm和20cm处;光合有效辐射传感器、日照时数传感器以及四分量辐射仪安装在4m处,朝向正南。 观测项目有:风速(WS_1_4_1、WS_1_8_1)(单位:米/秒)、风向(WD_1_4_1、WD_1_8_1)(单位:度)、空气温湿度(Ta_1_4_1、Ta_1_8_1和RH_1_4_1、RH_1_8_1)(单位:摄氏度、百分比)、气压(PA_1_1_1)(单位:百帕)、降水量(P_1_4_1)(单位:毫米)、四分量辐射(SWIN_1_4_1、SWOUT_1_4_1、LWIN_1_4_1、LWOUT_1_4_1、RN_1_4_1)(单位:瓦/平方米)、地表辐射温度(TC_1_4_1)(单位:摄氏度)、土壤热通量(SHF_1_5_1、SHF_1_10_1)(单位:瓦/平方米)、土壤水分(SWC_1_5_1、SWC_1_20_1)(单位:百分比)、土壤温度(TS_1_5_1、TS_1_10_1)(单位:摄氏度) 、土壤水势(SWP_1_5_1,SWP_1_20_1)(单位:千帕)、土壤电导率(EC_1_5_1、EC_1_20_1)(单位:微西门子/厘米)、光合有效辐射(PPFD_1_4_1)(单位:微摩尔/平方米秒)、日照时数(Sun_time_1_4_1)(单位:小时)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min);缺失或异常数据用-6999代替;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2021-6-10 10:30。
赵长明, 张仁懿
该数据集包含了2021年1月4日至2021年12月31日兰州大学寒旱区科学观测网络连城站气象要素梯度观测系统数据。站点位于甘肃永登连城吐鲁沟国家森林公园吐鲁坪,下垫面是森林。观测点的经纬度是102.737E,36.692N,海拔2903m。二维超声风速/风向传感器和空气温湿度传感器分别架设在4m、8m处,共2层,朝向正北;气压计安装在1.5m采集箱内;翻斗式雨量计安装在塔2m处;红外温度计安装在4m处,朝向正南,探头朝向垂直向下;土壤热通量板(自校正式)(2块)依次埋设在塔南侧植被下5cm和10cm处;土壤温/湿/电导率传感器和土壤水势传感器埋设在塔南侧植被下5cm和10cm处;光合有效辐射传感器、日照时数传感器以及四分量辐射仪安装在4m处,朝向正南。 观测项目有:风速(WS_1_4_1、WS_1_8_1)(单位:米/秒)、风向(WD_1_4_1、WD_1_8_1)(单位:度)、空气温湿度(Ta_1_4_1、Ta_1_8_1和RH_1_4_1、RH_1_8_1)(单位:摄氏度、百分比)、气压(PA_1_1_1)(单位:百帕)、降水量(P_1_4_1)(单位:毫米)、四分量辐射(SWIN_1_4_1、SWOUT_1_4_1、LWIN_1_4_1、LWOUT_1_4_1、Rn_1_4_1)(单位:瓦/平方米)、地表辐射温度(TC_1_4_1)(单位:摄氏度)、土壤热通量(SHF_1_5_1、SHF_1_10_1)(单位:瓦/平方米)、土壤水分(SWC_1_5_1、SWC_1_10_1)(单位:百分比)、土壤温度(TS_1_5_1、TS_1_10_1)(单位:摄氏度) 、土壤水势(SWP_1_5_1,SWP_1_10_1)(单位:千帕)、土壤电导率(EC_1_5_1、EC_1_10_1)(单位:微西门子/厘米)、光合有效辐射(PPFD_1_1_1)(单位:微摩尔/平方米秒)、日照时数(Sun_time_1_4_1)(单位:小时)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min);缺失或异常数据用-6999代替;2021.6.13-3021.9.8日,由于电线被老鼠咬断,导致所有传感器数据缺失;2021.1.4-2021.9.8日,8m风速风向传感器、5/10cm土壤温/湿/电导率传感器、5/10土壤水势传感器、4m红外地温传感器故障(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2021-8-20 10:30。
赵长明, 张仁懿
该数据集包含了2021年1月1日至2021年12月31日兰州大学寒旱区科学观测网络瓜州站气象要素梯度观测系统数据。站点位于甘肃酒泉瓜州县柳园镇,下垫面是荒漠。观测点的经纬度是95.673E,41.405N,海拔2014m。二维超声风速/风向传感器和空气温湿度传感器分别架设在2m、4m、8m、16m、32m、48m处,共6层,朝向正北;气压计安装在1.5m采集箱内;翻斗式雨量计安装在塔4m处;红外温度计安装在4m处,朝向正南,探头朝向垂直向下;土壤热通量板(自校正式)(2块)依次埋设在塔南侧植被下5cm和10cm处;土壤温/湿/电导率传感器和土壤水势传感器埋设在塔南侧植被下5cm、10cm、20cm、40cm、60cm、80cm处;光合有效辐射传感器、日照时数传感器以及四分量辐射仪安装在4m处,朝向正南。 观测项目有:风速(WS_1_2_1、WS_1_4_1、WS_1_8_1、WS_1_16_1、WS_1_32_1、WS_1_48_1)(单位:米/秒)、风向(WD_1_2_1、WD_1_4_1、WD_1_8_1、WD_1_16_1、WD_1_32_1、WD_1_48_1)(单位:度)、空气温湿度(Ta_1_2_1、Ta_1_4_1、Ta_1_8_1、Ta_1_16_1、Ta_1_32_1、Ta_1_48_1和RH_1_2_1、RH_1_4_1、RH_1_8_1、RH_1_16_1、RH_1_32_1、RH_1_48_1)(单位:摄氏度、百分比)、气压(PA_1_1_1)(单位:百帕)、降水量(P_1_4_1)(单位:毫米)、四分量辐射(SWIN_1_4_1、SWOUT_1_4_1、LWIN_1_4_1、LWOUT_1_4_1、RN_1_4_1)(单位:瓦/平方米)、地表辐射温度(TC_1_4_1)(单位:摄氏度)、土壤热通量(SHF_1_5_1、SHF_1_10_1)(单位:瓦/平方米)、土壤水分(SWC_1_5_1、SWC_1_10_1、SWC_1_20_1、SWC_1_40_1、SWC_1_60_1、SWC_1_80_1)(单位:百分比)、土壤温度(TS_1_5_1、TS_1_10_1、TS_1_20_1、TS_1_40_1、TS_1_60_1、TS_1_80_1)(单位:摄氏度) 、土壤水势(SWP_1_5_1、SWP_1_10_1、SWP_1_20_1、SWP_1_40_1、SWP_1_60_1、SWP_1_80_1)(单位:千帕)、土壤电导率(EC_1_5_1、EC_1_10_1、EC_1_20_1、EC_1_40_1、EC_1_60_1、EC_1_80_1)(单位:微西门子/厘米)、光合有效辐射(PPFD_1_4_1)(单位:微摩尔/平方米秒)、日照时数(Sun_time_1_4_1)(单位:小时)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min);缺失或异常数据用-6999代替;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2021-6-10 10:30。
赵长明, 张仁懿
该数据集包含了2021年1月1日至2021年12月31日兰州大学寒旱区科学观测网络敦煌站气象要素梯度观测系统数据。站点位于甘肃敦煌西湖,下垫面是湿地。观测点的经纬度是93.709E,40.348N,海拔994m。二维超声风速/风向传感器和空气温湿度传感器分别架设在4m、8m处,朝向正北;气压计安装在1m采集箱内;翻斗式雨量计安装在塔4m处;红外温度计安装在4m处,朝向正南,探头朝向垂直向下;土壤热通量板(自校正式)(2块)依次埋设在塔南侧植被下5cm和10cm处;土壤温/湿/电导率传感器和土壤水势传感器埋设在塔南侧植被下5cm和20cm处;光合有效辐射传感器、日照时数传感器以及四分量辐射仪安装在4m处,朝向正南。 观测项目有:风速(WS_1_4_1、WS_1_8_1)(单位:米/秒)、风向(WD_1_4_1、WD_1_8_1)(单位:度)、空气温湿度(Ta_1_4_1、Ta_1_8_1和RH_1_4_1、RH_1_8_1)(单位:摄氏度、百分比)、气压(PA_1_1_1)(单位:百帕)、降水量(P_1_4_1)(单位:毫米)、四分量辐射(SWIN_1_4_1、SWOUT_1_4_1、LWIN_1_4_1、LWOUT_1_4_1、RN_1_4_1)(单位:瓦/平方米)、地表辐射温度(TC_1_4_1)(单位:摄氏度)、土壤热通量(SHF_1_5_1、SHF_1_10_1)(单位:瓦/平方米)、土壤水分(SWC_1_5_1、SWC_1_20_1)(单位:百分比)、土壤温度(TS_1_5_1、TS_1_20_1)(单位:摄氏度) 、土壤水势(SWP_1_5_1,SWP_1_20_1)(单位:千帕)、土壤电导率(EC_1_5_1,EC_1_20_1)(单位:微西门子/厘米)光合有效辐射(PPFD_1_4_1)(单位:微摩尔/平方米秒)、日照时数(Sun_time_1_4_1)(单位:小时)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min);缺失或异常数据用-6999代替;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2021-6-10 10:30。
赵长明, 张仁懿
该数据集包含了2021年1月1日至2021年12月31日兰州大学寒旱区科学观测网络大野口站气象要素梯度观测系统数据。站点位于甘肃张掖大野口排露沟,下垫面是林缘草地。观测点的经纬度是100.286E,38.556N,海拔2703m。二维超声风速/风向传感器和空气温湿度传感器分别架设在8m处;气压计安装在1.5m采集箱内;翻斗式雨量计安装在塔2m处;红外温度计安装在2m处,朝向正南,探头朝向垂直向下;土壤热通量板(自校正式)埋设在塔南侧植被下5cm处;土壤温/湿/电导率传感器和土壤水势传感器埋设在塔南侧植被下20cm处;光合有效辐射传感器、日照时数传感器以及四分量辐射仪安装在2m处,朝向正南。 观测项目有:风速(WS_1_8_1)(单位:米/秒)、风向(WD_1_8_1)(单位:度)、空气温湿度(Ta_1_8_1和RH_1_8_1)(单位:摄氏度、百分比)、气压(PA_1_1_1)(单位:百帕)、降水量(P_1_4_1)(单位:毫米)、四分量辐射(SWIN_1_4_1、SWOUT_1_4_1、LWIN_1_4_1、LWOUT_1_4_1、Rn)(单位:瓦/平方米)、地表辐射温度(TC_1_1_1)(单位:摄氏度)、土壤热通量(SHF_1_5_1)(单位:瓦/平方米)、土壤水分(SWC_1_20_1)(单位:百分比)、土壤温度(TS_1_20_1)(单位:摄氏度) 、土壤水势(SWP_1_20_1)(单位:千帕)、土壤电导率(EC_1_20_1)(单位:微西门子/厘米)光合有效辐射(PPFD_1_4_1)(单位:微摩尔/平方米秒)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min);缺失或异常数据用-6999代替;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2021-6-10 10:30。
赵长明, 张仁懿
埃迪卡拉纪与寒武纪早期是地球生命系统演化中的一段最为重要转折期之一,是地史上隐生宙向显生宙的过渡期,也是研究后生动物起源与演化最为热点的时期。目前,全球许多地区都已经围绕这一科学问题开展了大量的古生物学、地层学、地球化学以及地球物理等多学科交叉研究工作。目前,在喜马拉雅构造区,对应这段时间的地层仅在印度次大陆有过少量报道和研究。巴基斯坦北部位于喜马拉雅构造带西部,是青藏高原重要的毗连区之一。巴基斯坦北部地区虽然发育有新元古代至寒武纪早期的地层,但一直以来都缺乏相关的基础研究工作,导致学界难以确定对这段地层的具体时代归属。因此急需做开展相关的研究工作来理清该地区埃迪卡拉纪至寒武纪早期的沉积序列、生物地层以及化学地层,并与同期其它地区的地层进行比对,为今后的深入研究建立时间框架。本次考察主要集中对Hazara盆地的几个剖面(Sikhar Mountain、Tarnawai Village、Salhad Village、Abbottabad Height、Sobangali、Neelor Village以及Pindkhan Khel)做了详细的岩石地层、古生物以及地球化学样品野外记录与采样工作,确定Hazara盆地有较为连续的埃迪卡拉纪至寒武纪早期的地层记录。
潘兵
本数据集包括祁连山地区2020年日值0.05°×0.05°地表土壤水分产品。采用耦合小波分析的随机森林优化降尺度模型(RF-OWCM),通过对SMAP L3级被动微波36km地表土壤水分产品(SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture, V8)进行降尺度,得到0.05°×0.05°地表土壤水分产品。参与降尺度模型的数据包括GLASS Albedo,MUSES LAI/FVC,中国西部逐日1 km全天候地表温度数据集(TRIMS LST-TP;2000-2021)V2,以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
本数据集综合了2014年珠峰、林芝、纳木错(探空观测时段为6月、8月和11月的 08时,14时和20时)站点和2019年第二次青藏高原科考“地-气相互作用与气候效应”立体综合加强期观测试验狮泉河(探空观测时段为5月、7月和10月的02时, 08时,14时和20时)站点探空观测数据。本数据是由位温、比湿、风速、风向和相对高度组成的梯度观测数据,数据采集频率为2s,使用时间均为北京时,数据完整性文件命名规则为:年份+要素.xlsx。
李茂善, 马耀明, 胡泽勇, 陈学龙, 孙方林, 马伟强
为描述青藏高原重要啮齿动物遗传多样性分布格局,厘清其相关遗传背景,并建立相应的遗传资源库。2021年本子课题(2019QZKK05010410)集中在青海海西蒙古藏族自治州、果洛州、海南州开展高原鼠兔调查,共采集200份高原鼠兔样品,实体样品为脾、肺组织。本数据集包含1个样品信息表和生境照、工作照、工作视频。样品信息表包含物种、性别、详细采样地、海拔、样品类型、采集时间、采集人、保存方式等基本样品信息,以excel表形式存储。
曲家鹏
本数据集的样品主要采集自2013-2019年,以及零星的2001-2013年的河流沉积物样品,数据集共包含40个干流样品和107个支流样品的采样地点信息,62个河流沉积物样品的碎屑组分数据,145个河流沉积物样品的重矿物数据,以及55个河流沉积物样品的地球化学数据。碎屑组分统计方法为Gazzi-Dickinson方法,选取的组分粒径为63-2000μm;重矿物则是利用重液(2.90 g/cm3)和液氮冷却法从32-500μm的沉积物中提取而来,并利用光学性质及拉曼光谱辅助鉴定统计各重矿物组分,地球化学测试分析对象为<2000μm的砂质沉积物。碎屑组分和重矿物组分数据分别在意大利米兰-比可卡大学和南京大学的实验室完成,地球化学数据由中国地质科学院地球物理地球化学勘察研究所完成,结果真实可靠。本数据集系统反应了雅鲁藏布江流域不同支流、不同构造单元(特提斯喜马拉雅地体、雅鲁藏布江缝合带、拉萨地块等)的沉积物组分,据此可明确藏南地区雅鲁藏布江流域内不同岩性/河流产出的沉积物组分分布特征,为深时的物源分析对比提供参照;同时结合正演混合模型计算,可知雅鲁藏布江流域的砂质沉积物主要来自北侧的拉萨地块,其贡献量了流域内~80%的砂质沉积物,是南侧特提斯喜马拉雅地体贡献量的5倍,而雅鲁藏布江缝合带仅提供了不到5%的砂质沉积物。
胡修棉, 姚文生
水源涵养服务是一种重要的生态系统服务,直接影响区域水资源的整体水平,会对区域生态系统、农业、工业、人类消费、水力发电、渔业和娱乐活动产生重要影响,对于维持生态系统稳定以及提高人类福祉具有重要意义。针对水源涵养产品生产,基于水量平衡原理耦合降雨量、蒸散发、太阳辐射、气温、植被类型等数据进行了国家屏障区生态系统水源涵养建模研究。水源涵养服务利用基于水量平衡原理的InVEST 模型进行计算,InVEST模型具有输入数据量少、导出数据量大、对抽象生态系统服务功能进行定量分析等优点,是当前水源涵养服务评估的重要手段。该方法认为水源涵养服务为降水量减去蒸散发量,计算的指标包括年降水量、年蒸散发量。其中降水量数据以气象站点数据为基础,将日气象数据累积到年尺度上,然后利用ArcGIS空间插值方法插值到空间上;蒸散发量的计算是通过Zhang模型实现。将多源数据作为InVEST模型的输入变量基于参数化模型实现对青藏高原2000-2020年1km分辨率的水源涵养服务估算。
王晓峰
土壤冻结深度(SFD)是评估冻土区水资源平衡、地表能量交换和生物地球化学循环变化所必需的,是冰冻圈气候变化的重要指标,对季节性冻土和多年冻土都至关重要。 本数据是基于Stefan方程,对CanEMS2 (RCP 45和RCP85)、GFDL-ESM2M (RCP26、RCP45、RCP60和RCP85)、HadGEM2-ES(RCP26、RCP45和RCP85)、IPSL-CM5A-LR(RCP26、RCP45、RCP60和RCP85)、MIROC5(RCP26、RCP45、RCP60和RCP85)和NorESM1-M(RCP26、RCP45、RCP60和RCP85)等多模型不同情景下,利用逐日气温的预测数据及E-factor数据,获得2007-2065年空间分辨率为0.25度,青藏高原区域年平均土壤冻结深度数据集。
潘小多, 李虎
本数据集包括青藏高原西部鲁玛江东错,美马错,骆驼湖和结则茶卡2016年以来湖泊水位观测数据 湖水水位通过HOBO水位计或Solist水位计观测,并通过岸边气压计进行校正,精度小于0.5 cm。 数据集包含以下内容: 2016-2021年鲁玛江东错湖水水位日变化数据; 2017-2019年,2020-2021年美马错湖水水位日变化数据; 2019-2020年骆驼湖湖水水位日变化数据; 2019-2020年结则茶卡湖水水位日变化数据。 水位,单位:m。
类延斌
Polar systems are undersampled due to the difficulty of sampling remote and challenging environments; however, these systems are critical components of global biogeochemical cycles. Measurements on primary productivity in specific areas can quantify the input of organic matter to food webs, and so are of critical ecological importance as well. However, long-term measurements using the same methodology are available only for a few polar systems. Primary productivity measurements using 14C-uptake incubations from the Ross Sea, Antarctica, are synthesized, along with chlorophyll concentrations at the same depths and locations. A total of 19 independent cruises were completed, and 449 stations occupied where measurements of primary productivity (each with 7 depths) were completed. The incubations used the same basic simulated in situ methodology for all. Integrated water column productivity for all stations averaged 1.10 ± 1.20 g C m-2 d-1, and the maximum was 13.1 g C m-2 d-1. Annual productivity calculated from the means throughout the growing season equalled 146 g C m-2 yr-1. The mean chlorophyll concentration in the euphotic zone (the 1% irradiance level) was 2.85 ± 2.68 mg m-3 (maximum observed concentration was 19.1 mg m-3). Maximum photosynthetic rates above the 30% isolume (normalized to chlorophyll) averaged 0.98 ± 0.71 mg C (mg chl)-1 h-1, similar to the maximum rate found in photosynthesis-irradiance measurements. Productivity measurements are consistent with the temporal patterns of biomass found previously, with biomass and productivity peaking in late December; mixed layers were at a minimum at this time as well. Estimates of plankton composition also suggest that pre-January productivity was largely driven by the haptophyte Phaeocystis antarctica, and summer productivity by diatoms. The data set will be useful for a comparison to other Antarctic regions and provide a basis for refined bio-optical models of regional primary productivity and biogeochemical models for the Southern Ocean.
Walker O. Smith
为描述青藏高原高原鼠兔种质资源遗传多样性分布格局,厘清其相关遗传背景,并建立相应的遗传资源库。2021年子课题(2019QZKK05010209)集中在青海省(海西蒙古族藏族自治州,格尔木市,昆仑山口;海西蒙古族藏族自治州,都兰县,香日德镇,沟里乡;果洛藏族自治州,玛多县;果洛藏族自治州,玛沁县,大武镇;黄南藏族自治州,泽库县;海南藏族自治州,贵南县,塔秀乡)不同海拔区域采集93份高原鼠兔种质资源,实体样品包括血液或、组织、粪便等。本数据集包含1个样品信息表。样品信息表包含物种、品种、详细采样地、样品类型、采集时间、采集人、保存方式等基本样品信息,以excel表形式存储。
张良志
数据包含伊朗高原库姆剖面中新世地层的36块样品的碳酸盐的碳同位素和氧同位素分析结果。沉积物中的碳酸盐碳氧同位素记录了地质历史时期的干湿变化,是目前古环境示踪研究应用的主要指标之一。所测的岩石类型为粘土岩,采自伊朗中部库姆剖面中-晚中新世地层Upper Red 组的细粒粘土岩夹层。沉积物样品经磨匀过筛后,由样品处理单元(碳酸盐装置)和MAT252同位素质谱联机的全自动在线系统完成碳氧同位素分析。C, O同位素比率均换算为Vienna Pee Dee Belemnite (V-PDB)标准,样品的分析精度为±0.1‰(碳同位素优于±0.06‰,氧同位素优于±0.08‰)。 碳酸盐含量由中和滴定法测得,分析精度为0.5%。数据的年龄是根据古地磁极性柱与国际标准极性柱的对比并通过线性内插获得。通过碳、氧同位素数据分析,可以重建中新世伊朗高原中部干旱环境的演化历史,进而探讨阿拉伯-欧亚板块碰撞以及全球气候变化的区域相应。研究目的和意义是解析伊朗中部中-晚中新世以来的气候变迁历史,最终揭示了13Ma以来伊朗中部的干旱化加剧。
孙继敏
数据包含塔吉克盆地阿克苏剖面晚始新世-早渐新世地层的185块样品的碳酸盐含量、无机碳酸盐的碳同位素和氧同位素分析结果。沉积物中的碳酸盐碳氧同位素记录了地质历史时期的干湿变化,是目前古环境示踪研究应用的主要指标之一。样品来自塔吉克盆地中部Aksu剖面晚始新世-早渐新世陆相地层中的细粒沉积物(粉砂岩、粘土岩)。沉积物样品经磨匀过筛后,由样品处理单元(碳酸盐装置)和MAT252同位素质谱联机的全自动在线系统完成碳氧同位素分析。C, O同位素比率均换算为Vienna Pee Dee Belemnite (V-PDB)标准,样品的分析精度为±0.1‰(碳同位素优于±0.06‰,氧同位素优于±0.08‰)。 碳酸盐含量由中和滴定法测得,分析精度为0.5%。数据的年龄是根据古地磁极性柱与国际标准极性柱的对比并通过线性内插获得。通过塔吉克盆地的碳、氧同位素数据分析,可以重建晚始新世-早渐新世以来干旱环境的演化历史,进而探讨印度-欧亚板块碰撞以及全球气候变化的区域相应。C、O同位素数据揭示了34Ma以来塔吉克盆地的干旱化加剧。
孙继敏
1990-2020年 中蒙俄经济走廊公路、铁路、管线空间分布图 1)1990年公路、铁路、管线空间数据;2015年中蒙俄经济走廊公路、铁路、管线空间数据;2020年中蒙俄经济走廊公路、铁路、管线空间数据; 2)在NASA网站下载中蒙俄经济走廊范围内的遥感影像,用ARCGIS10.2软件人工解译提取公路、铁路;地图要素借助俄罗斯地图册标注;管线数据参考相关地图人工标注 ; 3)图件集比例尺为1:2500000,清晰反映了近30年来中蒙俄经济走廊交通及管线变化情况; 4)数据详细显示了近30年来中蒙俄经济走廊交通及管线的变化情况,为后期研究交通及管线建设对生态环境变化研究提供数据基础。
卜晓燕
本数据集包括了中蒙俄经济走廊区1982-2015年最大归一化植被指数(NDVI)数据,2000-2020年最大增强型植被指数(EVI)数据,以及2001-2019年土地覆被利用变化数据(LUCC)。其中,NDVI数据提取自GIMMS卫星数据,分辨率为8km;EVI和LUCC数据提取自MODIS卫星数据(MOD13A3和MCD12C1),分辨率分别为1km和5km。数据集过滤了MODIS卫星数据中原本存在的异常值或缺测值,相比源数据质量更高。其中,使用最大值提取法处理NDVI和EVI数据,得到年最大NDVI和EVI,可以更好地反应研究区的植被分布及变化情况。基于卫星遥感数据的植被和土地利用变化,可以为中蒙俄经济走廊生态环境风险防控提供数据支撑。
张雪芹
为整合泛第三极家鸡数据,建设“全球家鸡基因组数据库(Chicken2K)”,为国际家鸡起源驯化选择研究提供基础数据,为家鸡新品种选育改良提供科学指导。2022年本子课题与中国西南野生生物种质资源库(动物种质资源库)合作,申请使用库内近年采集保藏的东南亚地区家养动物遗传样本,挑选代表性个体开展遗传多样性评估。本数据集包含动物种质资源库馆藏的东南亚国家(老挝、泰国、缅甸、越南)家鸡及红原鸡血液、组织样品信息共224份。本数据集包含样品物种、品种、详细采样地、样品类型、采集时间、采集人、保存方式等基本样品信息,以excel表形式存储。
彭旻晟
植被净初级生产力(Net Primary Productivity, NPP)作为生态系统物质及能量循环的基础,能够反映区域和全球尺度植被的固碳能力,是评价陆地生态系统质量的重要指标。针对植被净初级生产力产品生产,基于光能利用率模型的原理耦合遥感、气象、植被及土壤类型数据进行了国家屏障区生态系统生产力建模研究。在参数的选择上,由SPOT/VEG ETATION NDVI卫星遥感数据、中国植被图、太阳总辐射值及温度等数据计算出光合有效辐射(APAR);根据区域蒸散模型模拟水分胁迫因子,与土壤水分子模型相比,它可以简化参数,增强模型的可操作性。将光合有效辐射和实际光能利用率作为CASA(Carnegie-Ames-Stanford Approach)模型的输入变量,基于参数化模型实现对青藏高原2000-2018年1km分辨率的陆地植被净初级生产力估算。
王晓峰
生物多样性(biodiversity)是生物及其环境形成的生态复合体以及与此相关的各种生态过程的总和,表现在生命系统的各个组织水平上,包括遗传多样性、物种多样性以及生态系统多样性三个层次。生境质量越高,生物栖息地环境越好,生物多样性越高,在部分研究中采用生境质量指数来表征生物多样性(肖强 et al. 2014)。生境质量指数(Habitat Quality,HQ)是对区域土地利用类型的生境适宜性和生境退化程度状况进行评价的一个无量纲综合性指标,以耕地、道路、城镇和河流作为生境胁迫因子,打分形成敏感性参数。针对生物多样性产品生产,基于土地利用数据和InVEST模型进行了国家屏障区生态系统生物多样性建模研究。InVEST模型具有输入数据量少、导出数据量大、对抽象生态系统服务功能进行定量分析等优点,是当前生物多样性评估的重要手段。基于青藏高原地区土地利用的实际情况,选取水田、旱地、城镇用地、农村居民点和其他建设用地这5种人类活动影响极大的土地利用类型作为威胁因子。将土地利用数据作为InVEST模型的输入变量,基于参数化模型实现对青藏高原2000-2020年1km分辨率的陆地生物多样性估算。
王晓峰
中亚-西亚经济走廊以荒漠、山地和高原等地形为主,平均海拔为1000m左右,气候极度干旱,荒漠分布面积大,生态脆弱,干热季可持续时间久,可长达7个月,年平均降雨量最多也仅有150mm。区内自然环境差异大,地质条件复杂,在区域差异化的构造、地震、气象、水文、生态等的复合驱动作用下,走廊范围内泥石流滑坡广泛分布。以遥感影像为基础,解译中国-中亚-西亚经济走廊滑坡泥石流灾害,统计显示,中国-中亚-西亚经济走廊共发育滑坡303处,泥石流灾害2159处,泥石流主要包括冻融型泥石流、冰水型泥石流、暴雨型泥石流3种类型。
邹强
冰川厚度变化是冰川变化监测的关键参数,利用历史高分KH-9影像(1974年)、SRTM DEM数据产品 (2000年)、TanDEM-X双站干涉SAR数据(2011-2014)和SPOT-7影像(2015年)数据并分别基于光学摄影测量技术和雷达干涉测量技术制备了藏东南雅弄冰川区的多期的数字高程模型。其中,对于TanDEM-X雷达数据,在数据处理过程中对其在冰川区的几何定位误差进行了去除,同时针对KH-9 DEM中雪盖区的异常变化值进行了剔除。然后经过X波段和C波段雷达波穿透深度改正最后生成了雅弄冰川在1975-2015年期间的年代际和年际的厚度变化数据集。该数据空间分辨率为30m,可进一步用于冰川演变模型参数标定,分析冰川未来变化等方面。
周玉杉, 李新, 郑东海, 李志伟
调查并收集青藏高原及周边地区的蔓菁种质资源,进行同质园实验获得表型数据,利用基因组测序技术获得数据文库并构建高质量参考基因组。使用重测序技术对蔓菁群体进行结构分析,结合早期人类迁徙及扩散路线对蔓菁在青藏高原现代地理分布格局形成的历史过程进行探究。与表型数据进行关联分析,对蔓菁现代居群适应性机制进行解析。从全基因组层面上理解泛第三极的环境差异以及不同地区人类活动和文化差异对青藏高原植物迁徙、适应及驯化的影响。
段元文
调查并收集青藏高原及周边地区的蔓菁种质资源,进行同质园实验获得表型数据,利用基因组测序技术获得数据文库并构建高质量参考基因组。使用重测序技术对蔓菁群体进行结构分析,结合早期人类迁徙及扩散路线对蔓菁在青藏高原现代地理分布格局形成的历史过程进行探究。与表型数据进行关联分析,对蔓菁现代居群适应性机制进行解析。从全基因组层面上理解泛第三极的环境差异以及不同地区人类活动和文化差异对青藏高原植物迁徙、适应及驯化的影响。
段元文
调查并收集青藏高原及周边地区的蔓菁种质资源,进行同质园实验获得表型数据,利用基因组测序技术获得数据文库并构建高质量参考基因组。使用重测序技术对蔓菁群体进行结构分析,结合早期人类迁徙及扩散路线对蔓菁在青藏高原现代地理分布格局形成的历史过程进行探究。与表型数据进行关联分析,对蔓菁现代居群适应性机制进行解析。从全基因组层面上理解泛第三极的环境差异以及不同地区人类活动和文化差异对青藏高原植物迁徙、适应及驯化的影响。
段元文
在国家重点研发计划“冰冻圈和极地环境变化关键参数观测与反演”第一课题“冰冻圈关键参数多尺度观测与数据产品研制“等项目的资助下,中国科学院青藏高原研究所周石硚课题组利用层次分析法,筛选出8个参评因素,通过划分等级的方式评价了第三极地区现有的8套冰川编目数据的综合质量,并融合各评价单元内综合质量最佳的数据生成了一套新的冰川编目数据。新数据大大提高了整个第三极地区单一冰川编目数据的质量。 该数据内容包括(1)原冰川编目数据信息,包括冰川的经纬度、面积、高程、坡度、坡向、遥感数据的采集时间等;(2)评价信息,包括8个参评因素的标准化指标值、综合评价值和评价单元内冰川编目数据的等级等。这些数据不仅可以让潜在用户知道某个区域综合质量最佳的产品,还能提供冰川编目数据的单一质量或因素(如季节性积雪)。
何霞, 周石硚
为描述青藏高原及周边地区(泛第三极地区)主要驯化动物遗传多样性的分布格局,厘清其相关遗传背景。2020年我们对266个全球家鸡血液、组织等DNA组织样品提取总DNA后建库并做全基因组测序,同时下载已公布家鸡基因组数据一共863个家鸡基因组开展群体分析,为探索泛第三极地区家鸡驯化、迁徙、扩张等群体历史事件提供基础数据,并进一步探讨驯化动物对干燥等恶劣环境的适应机理提供资料。本数据集相关文章已发表,本数据集内所有数据提供fastq,bam,vcf,snp文件在线下载。
彭旻晟
This is a dataset of environmental factors (elevation, mean annual temperature, mean annual precipitation and potential evapotranspiration), diversity attributes (richness, diversity, evenness and dominance), stem density, and forest biomass changes along the elevational gradient in the Kangchenjunga Landscape, eastern Himalayas.
Nita Dyola, Shalik Ram Sigdel, Eryuan Liang
Sugita (2007)提出的 REVEALS 模型,通过引入不同种属花粉产量,考量不同花粉类型的传播能力,以及不同沉积类型和沉积盆地大小对花粉源区的影响,将花粉组合定量转化为植被盖度,使得基于花粉的REVEALS植被重建结果更加接近真实的植被盖度。本文利用REVEALS 模型,基于94个高质量的湖泊/泥炭化石花粉数据,定量重建了我国温带和北亚热带区域的1˚x1˚空间分辨率的全新世植被覆盖变化。11.7 - 0.7 ka 时段,重建结果的分辨率为500年;0.7 ka至今,重建结果分辨率依次提高为350年(0.7˗0.35 ka),250年(0.35˗0.1 ka)和100年(0.1 ka 至今)。 研究区涵盖了75个1˚x1˚栅格范围,基于REVEALS的植被重建数据包含25个时间窗口内27个种属,两种植被功能型合并方式:6个植被功能型和10个植被功能型,以及3种土地覆盖类型的植被盖度数据及误差。元数据文件包含了重建样点名称、现代植被类型、年代个数、经纬度及海拔、沉积盆地的大小和类型等信息。本数据可被耦合到古气候模拟的模型中,也可用于评价和校正古植被模拟及土地利用模型。
李芙蓉
中国2000-2020年逐日积雪反照率产品数据集地理空间范围为72 - 142E,16 - 56N,采用等经纬度投影,空间分辨率0.005°。数据集时间范围覆盖2000年1月1日至2020年12月31日,时间分辨率为1天。数据包含6个要素:黑空反照率(Black_Sky_Albedo)、白空反照率(White_Sky_Albedo)、太阳天顶角(Solar_Zenith_Angle)、云标识(Cloud_Mask)、林区校正标识(Forest_Mask)和反演情况标识(Abnormal_Mask)。黑空反照率要素记录了反演得到的黑空反照率,计算因子为0.0001,数据范围为0-10000。白空反照率要素记录了反演得到的白空反照率,计算因子为0.0001,数据范围为0-10000。太阳天顶角要素记录了太阳天顶角度,计算因子为0.01,数据范围为0-9000。云标识要素记录了像元是否为云,值为0表示非云,值为1表示为云。林区校正标识要素记录了像元是否作为森林类型像元被校正过,值为0表示未校正,值为1表示已校正。反演情况标识要素记录了像元所对应的黑空反照率及白空反照率的反演结果是否为小于0或大于10000的异常值,值为0表示非异常值,值为1表示为异常值。数据集基于MODIS地表反射率产品MOD09GA,积雪产品MOD10A1/MYD10A1和全球数字高程模型SRTM数据,在ART模型基础上发展了积雪反照率反演模型,并利用GEE和本地端交互生产而来。为了评估ChinaSA的反演质量,利用地面台站的观测数据提出了样方观测验证方法,验证了积雪反照率产品的精度,并与常用的四种反照率产品(GLASS、GlobAlbedo、MCD43A3和SAD)进行了精度对比。验证结果表明,ChinaSA在所有验证中精度都优于其他产品,均方根误差小于0.12,在森林区域的均方根误差能达到0.021。
肖鹏峰, 胡瑞, 张正, 秦棽
1)数据内容:2001-2018年南极冰盖近地面月气温时空数据集。 2)数据来源及加工方法:利用中分辨率成像光谱仪(MODIS)地表温度测量数据,结合119个气象站的现场气温记录,利用神经网络模型重建了南极冰盖(AIS)近地面气温数据,分辨率为0.05°×0.05°,时间尺度为2001-2018。 3)数据质量描述:精度优于ERA5再分析资料。 4)数据应用成果及前景:该数据库可用于研究南极冰盖近地面气温的时空分布特征,研究SAM和ENSO等对南极气温年际变化的影响。此外,由于数值天气预报模式输入的独立性,该数据集有可能用于气候模式验证和数据同化。
张雪影
数据集为中国多情景多模式逐月平均气温数据,空间分辨率为0.0083333°(约1km),时间为2021年1月-2100年12月。数据为NETCDF格式。数据是根据IPCC耦合模式比较计划第六阶段(CMIP6)发布的全球>100 km气候模式数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国地区降尺度生成。数据采用IPCC最新发布的SSP情景(SSP119、SSP245、SSP585),每个情景包含三个GCMs(EC-Earth3、GFDL-ESM4、MRI-ESM2-0)气候数据,数据集包含的地理空间范围是中国主要陆地,不含南海岛礁等区域。单位为0.1℃。文件命名是GCM_SSP_tmp-30s-序号.nc,30s即0.0083333°,序号从1-40,序号1表示2021.1-2022.12,依次表示年份;以EC-Earth3_ssp119_tmp-30s-1.nc文件为例,表示SSP119情景下EC-Earth3气候模的1km分辨率2021.1-2022.12逐月均温数据,含24个图层。欲更深入的理解数据请参阅文献引用方式下的数据作者已发表的论文。
彭守璋
本数据集包含:(1)基于测高卫星提取的北半球16个大型湖泊水库冰厚数据,时间跨度为1992-2019年,时间分辨率10天,文件名为Altimetric LIT for 16 large lakes.xlsx;(2)基于遥感湖冰模型的北半球1,313个面积50km^2以上湖泊的逐日湖冰厚度和湖泊表面积雪深度数据,时间跨度为2003-2018年,文件格式为nc格式;(3)未来湖冰厚度变化的预测情况,时间跨度2071-2099年,文件为table S1.xlsx;(4)一个用于查找湖泊的对照表,包含湖泊ID,名称,地理坐标和面积等信息。本数据集可以为全球湖冰和湖面积雪研究提供基础信息,便于深入理解在变化环境下湖冰的演变规律及其对湖泊生态环境和区域社会经济的影响。
李兴东, 龙笛, 黄琦, 赵凡玉
1) 数据内容:藏东南地区近二十年的冰川表面高程变化数据,包括2000-2020年时间变化序列及2000和2019年间0.5°网格尺度的冰川表面高程变化数据。 2) 数据来源及加工方法:2000-2020年时间变化序列由联合卫星测高数据(ICESat、CryoSat-2、ICESat-2)、地形数据(2014年ASTER L1A数据生产的DEM)、卫星重力数据(GRACE及GLDAS)的冰川监测方法获得。网格尺度的冰川表面高程变化数据由ICESat-2数据与NASADEM计算得到。 3) 数据质量描述:本数据与无人机航拍结果、GPS观测结果及以往文献结果较为一致,且时间分辨率和空间分辨率有较大提升。 4) 数据应用成果及前景:本数据可用于率定冰川水文模型,也可与后续研究做对比。
赵凡玉, 龙笛, 李兴东, 黄琦, 韩鹏飞
本数据集包括藏东南地区(Southeastern Tibetan Plateau, SETP)的矢量边界以及DEM、坡度、坡向、曲率等地形数据: 1、SETP_Boundary: 以帕隆藏布流域为中心,利用周边河网(包括雅鲁藏布江、怒江、澜沧江及各自支流)划分藏东南地区。该区域包括了念青唐古拉山东段、喜马拉雅山东段及横断山的西侧部分,是我国海洋性冰川分布最为集中的地区。 2、地形数据:基于NASA Earthdata数据中心提供的NASADEM数据,拼接生成了藏东南地区的DEM、坡度(SLOPE)、坡向(ASPECT)、剖面曲率(PROFC)和水体掩膜(SWB)数据。 3、山体阴影:基于藏东南地区的NASADEM进行表面分析,生产了高度角为45°的山体阴影数据。
赵凡玉, 龙笛, 李兴东, 黄琦, 韩鹏飞
数据集为中国多情景多模式逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为2021年1月-2100年12月。数据为NETCDF格式。数据是根据IPCC耦合模式比较计划第六阶段(CMIP6)发布的全球>100 km气候模式数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国地区降尺度生成。数据采用IPCC最新发布的SSP情景(SSP119、SSP245、SSP585),每个情景包含三个GCMs(EC-Earth3、GFDL-ESM4、MRI-ESM2-0)的气候数据,数据集包含的地理空间范围是中国主要陆地,不含南海岛礁等区域。单位为0.1mm。文件命名是GCM_SSP_pre-30s-序号.nc,30s即0.0083333°,序号从1-40,序号1表示2021.1-2022.12,依次表示年份;以EC-Earth3_ssp119_pre-30s-1.nc文件为例,表示SSP119情景下EC-Earth3气候模式的1km分辨率2021.1-2022.12逐月降水数据。欲更深入的理解数据请参阅文献引用方式下的数据作者已发表的论文。
彭守璋
本数据集为南帕米尔高原阿里秋地区白垩纪花岗岩锆石原位Hf-O同位素数据。分析的样品类型包括黑云母花岗岩和花岗闪长岩。锆石Hf-O测试采用Cameca IMS 1280HR二次离子质谱(SIMS)分析,测试单位是中国科学院广州地球化学研究所同位素地球化学国家重点实验室。18O/16O比值单次分析的内精度一般优于0.2‰(1σ)。采用蓬莱标准品重复分析重复性测定的外部精密度为0.10‰,数据结果真实可靠。数据来自正在审稿阶段文章。该数据集可以用于研究帕米尔高原岩浆岩的岩石成因和构造背景。
唐功建, 但卫
该数据集主要包括藏南山南市曲松县罗布萨镇正嘎花岗岩和阿里地区革吉县亚热乡赛力普钾质岩的B-Mo非传统同位素数据,该数据主要用来研究岩浆演化过程中B-Mo同位素分馏机制以及印度大陆地壳物质再循环,对示踪岩浆岩成因及碰撞带壳幔反应研究具有重要意义。岩石主要来自藏南桑日及赛力普地区的花岗岩和钾质岩。其中Mo测试样品为51件,B测试数量为24件,不包括重复样品检测。B-Mo同位素分析采用MC-ICP-MS,溶液的B和Mo含量分别才用那个ICP-AES和MC-ICP-MS。测试单位为中国科学院广州地球化学研究所。该数据来自未接收的文章,数据真实可靠。可以应用于非传统同位素分馏研究以及岩浆岩石成因。
范晶晶, 王强
本数据集主要包括南帕米尔高原穆尔加布地块到霍罗格地块71件中生代岩浆岩全岩Sr-Nd同位素数据。岩石样品岩性包括二云母花岗岩、黑云母花岗岩、白云母花岗岩、长英质岩脉以及少量闪长质包体等。数据主要来自正在审稿阶段文章。Sr-Nd同位素测试方法采样MC-ICP-MS,测试单位为桂林理工大学有色及贵金属隐伏矿床勘查教育部工程研究中心。数据结果真实可靠。未来可以应用于研究帕米尔高原中生代岩浆岩成因以及构造演化。
唐功建, 但卫
华北平原(NCP)是中国最重要的农业生产基地之一,其面积约14万平方公里。除了从黄河取地表水进行渠灌,华北平原还开采大量地下水用于灌溉。高时空分辨率且连续完整的逐日蒸散(ET)估算,将极大提高我们对整个NCP农业用水消耗的认识,服务于农业水资源高效利用。基于双源能量平衡模型(TSEB)和数据融合,本研究在华北平原生成1 km空间分辨率和日尺度,且时间跨度为2008年1月至2019年12月的蒸散数据集。该数据集时空连续完整,且具有较高的空间分辨率。相较于其他产品,该数据集具有可靠的精度,甚至好于已发表的结果。此外,该数据集和相关方法对NCP以及其他农作物种植区的多尺度变化和趋势分析具有重要价值。
张才金, 龙笛
“亚洲水塔”青藏高原(TP)的降水在区域水和能源循环中发挥着关键作用,对下游国家的水资源供应有重要影响。气象站点所获取的降水信息通常被认为是最准确的,但在地形复杂、环境恶劣的青藏高原中,气象站数据却十分有限。卫星和再分析降水产品可以为地面测量提供补充信息,特别是在大面积测量不足的区域。在这里,我们通过使用人工神经网络 (ANN) 和环境变量(包括海拔、地表压力和风速)确定各种数据源的权重来最优地融合站点、卫星和再分析数据。在 1998-2017 年期间,以每日时间尺度和 0.1° 的空间分辨率生成了一个多源降水 (MSP) 数据集横跨青藏高原。与其他四颗卫星产品相比,MSP与标准观测的日降水相关系数(CC)最高(0.74),均方根误差第二低,表明MSP的质量和数据合并的有效性方法。我们使用分布式水文模型进一步评估了青藏高原长江和黄河源头测量不佳的不同降水产品的水文效用。在 2004-2014 年期间,MSP 实现了每日流量模拟的最佳 Nash-Sutcliffe 效率系数(超过 0.8)和 CC(超过 0.9)。此外,基于多重搭配评估,MSP 在未测量的西部 TP 上表现最好。该合并方法可应用于全球其他数据稀缺地区,为水文研究提供高质量的降水数据。整个 TP 的左下角的经纬度、行数和列数以及网格单元信息都包含在每个 ASCII 文件中。
洪仲坤, 龙笛
本数据是金沙江白格滑坡裂缝区渗压监测数据,主要目的是确定地下水对白格滑坡的影响。结合现场地质条件,布置了4只渗压计。采用现场人工监测方法,用excel软件进行数据处理。结合降雨量的监测数据分析,地下水位变化过程与降雨量关系不大。四只渗压计的测值在±5kPa(0.5m水头)以内,至2020年,四个钻孔的渗压基本消失。即滑坡与渗压关系不大。通过对该数据的分析排除了地下水对白格滑坡失稳的直接影响,为白格滑坡稳定性评价和滑坡治理提供技术支持。
陈菲
基于大量的实地考察及室内试验,根据现场不同泥石流堆积体的物理参数,确定了不同泥石流堆积体的泥石流浆体黏度范围、泥石流固相颗粒级配与固相比。通过试验试做,确定了不同黏度范围浆体的水土比例,根据水土比例,配置不同黏度的泥石流浆体。通过筛分试验,确定了泥石流固相颗粒级配。考虑泥石流浆体黏度、固相比、颗粒级配三因素不同组合,人工配置不同状态泥石流淤积体,进行泥石流淤积体的承载力试验,研究不同黏度、不同固相比、不同颗粒级配泥石流淤积体的固结特性及承载能力的时空变化特性。
刘彬, 苏娜, 徐林荣, 陈洪凯
研究设计了一种埋入式水泥基压电陶瓷传感器,将其埋入抗滑桩中,进行四点弯加载试验。使用声发射设备进行采集,并与传统的商业声发射传感器进行对比,验证了水泥基压电陶瓷传感器的可行性与准确性。本试验制备了四个压电陶瓷传感器,并在压电陶瓷传感器相近位置处各布置一个传统的商业声发射传感器,将两种传感器采集到的数据进行对比。共有四组数据,每组数据包含一个压电陶瓷传感器和一个相近位置的商业声发射传感器的数据。试验表明埋入式水泥基压电陶瓷传感器具有较高的灵敏度,可在准静态荷载下工作,对于大体积混凝土结构内部破裂的监测具有主要意义。
姜清辉
“一带一路”沿线国家水资源供给恢复力反映了沿线国家水资源供给恢复力水平,数据值越高,表明沿线国家水资源供给恢复力越强。“一带一路”沿线国家水资源供给恢复力数据产品制备,利用2000—2019年FLDAS(Famine Early Warning System Network Land Data Assimilation System)基于Noah陆面模式生产的逐年度降水量、地表径流量和地下净流量模拟数据集,在考虑逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了水资源供给恢复力产品。“一带一路”沿线国家水资源供给恢复力数据集对分析和对比当前各国水资源供给恢复力状况具有重要参考意义。
徐新良
“一带一路”沿线国家石油保障恢复力反映了沿线国家石油保障恢复力水平,数据值越高,表明沿线国家石油保障恢复力越强。石油保障恢复力数据产品制备参考了国际能源署各国能源统计数据,利用2000-2019年“一带一路”沿线国家石油供给和消耗差值的逐年数据,在考虑逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了石油保障恢复力产品。“一带一路”沿线国家石油保障恢复力数据集对分析和对比当前各国石油保障恢复力状况具有重要参考意义。
徐新良
“一带一路”沿线国家能源供给恢复力反映了沿线国家能源供给恢复力水平,数据值越高,表明沿线国家能源供给恢复力越强。能源供给恢复力数据产品制备参考了国际能源署各国能源统计数据,利用2000-2019年“一带一路”沿线国家煤炭、石油、天然气供给的逐年数据,在考虑各能源逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了能源供给恢复力产品。“一带一路”沿线国家能源供给恢复力数据集对分析和对比当前各国能源供给恢复力状况具有重要参考意义。
徐新良
“一带一路”沿线国家煤炭保障恢复力反映了沿线国家煤炭保障恢复力水平,数据值越高,表明沿线国家煤炭保障恢复力越强。煤炭保障恢复力数据产品制备参考了国际能源署各国能源统计数据,利用2000-2019年“一带一路”沿线国家煤炭供给和消耗差值的逐年数据,在考虑逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了煤炭保障恢复力产品。“一带一路”沿线国家煤炭保障恢复力数据集对分析和对比当前各国煤炭保障恢复力状况具有重要参考意义。
徐新良
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件