监测冰川物质平衡数据是反应冰川对气候变化响应的最直接最可靠的数据。 全球冰川监测物质平衡数据通过对全球可获取物质平衡数据进行收集整理,获取了具有连续观测时间序列(未间断)的76条冰川信息及其连续观测的冰川物质平衡数据,时间分辨率为年,从1950年到2016年。
肖瑶, 上官冬辉
南北极及青藏高原冰川雪和冰里原核微生物分布数据集提供了刘勇勤实验组在2010-2018年间从NCBI数据库收集的细菌16S核糖体RNA基因序列。 NCBI数据库搜索的关键词为Antarctic, Arctic Tibetan, Glacier.。收集的序列通过使用DOTOUR软件计算序列之间相似度,相似度在97%以上的序列聚类为一个OTU,并定义OTU代表序列。OTU代表序列通过“Classifier”软件与RDP数据库进行比对,在可靠性大于>80%的情况下鉴定到属一级水平。获得序列后,通过阅读序列文件中样品信息获得样品的GPS坐标。本数据包含每条序列的16S核糖体RNA基因片段序列,进化分类,及样品GPS坐标。本数据与以高通量测序为基础的序列相比,本数据的序列长度更长,分类更准确,对于比较三极微生物的进化信息,以及研究嗜冷微生物进化的认识有重要意义。
计慕侃
北美多模型集合NMME是由美国模式中心(包括NOAA/NCEP、NOAA/GFDL、IRI、NCAR、NASA)和加拿大CMC联合发布的多模式集合季节预报系统数据集。数据包含1982-2010年回报数据和2011年至今的实时气象预报数据。其时间分辨率为逐月,覆盖范围为全球,水平空间分辨率为1°。NMME共有9个气候预报模式,每个模式包含6-28个集合成员,预见期为9-12个月。其气候模式的名称、来源、集合成员和预见期如下: 1)CMC1-CanCM3,Environment Canada,10个模式,12个月 2)CMC2-CanCM4,Environment Canada,10个模式,12个月 3)COLA-RSMAS-CCSM3,National Center for Atmospheric Research,6个模式,12个月 4)COLA-RSMAS-CCSM34,National Center for Atmospheric Research,10个模式,12个月 5)GFDL-CM2p1-aer04,NOAA Geophysical Fluid Dynamics Laboratory,10个模式,12个月 6)GFDL-CM2p5-FLOR-A06,NOAA Geophysical Fluid Dynamics Laboratory,12个模式,12个月 7)GFDL-CM2p5-FLOR-B01,NOAA Geophysical Fluid Dynamics Laboratory,12个模式,12个月 8)NASA-GMAO-062012,NASA Global Modeling and Assimilation Office,12个模式,9个月 9)NCEP-CFSv2,NOAA National Centers for Environmental Prediction,24/28个模式,10个月 除CFSv2模式外(只含降水和平均气温),其他模式数据变量包含降水、平均气温、最高气温和最低气温。每个模式集合成员每月的一个变量数据存放一个nc文件。各变量的气象要素、变量名、单位和物理意义如下: 1)平均气温,tref,K,月平均近地面(2m)平均气温 2)最高气温,tmax,K,月平均近地面(2m)最高气温 3)最低气温,tmin,K,月平均近地面(2m)最低气温 4)降水,prec,mm/day,月平均降水量。 该数据集在气候预报,水文预报驱动,量化模式预报不确定性方面得到广泛的应用。
叶爱中
本数据集包括甘肃省张掖市甘州区五星村农田2013年11月18日-19日车载微波辐射计观测亮温、同步测量的土壤质地,粗糙度和地表温度连续观测数据集。地表温湿度包括温度传感器在土壤深度1cm、5cm,10cm,20cm四层和湿度传感器在土壤深度0-5cm处,观测的土壤温度,土壤水分数据。土壤温湿度的常规观测的时间频率为5分钟。 数据细节: 1. 时间:2013年11月18日-19日 2. 数据: 亮温: 使用车载多频被动微波辐射计观测,包括6.925、18.7和36.5GHz V极化和H极化数据(10.65GHz 波段损坏) 土壤温度:使用安装在dt80上的传感器测量1cm,5cm,10cm,20cm土壤温度 土壤湿度:使用H-probe传感器测量0-5cm土壤湿度,该探头可以同时测量0-5cm土壤温度 土壤质地:取土样在北京师范大学测量 土壤粗糙度:使用东北地理所提供的粗糙度仪测量 3. 数据大小:3.5M 4. 数据格式:.xls
赵少杰, 寇晓康, 叶勤玉, 马明国
青藏高原典型冰川DEM采用双站InSAR方法制作,数据采集时间为2013年11月21日,覆盖范围为普若岗日和祁连山西部地区,空间分辨率10米,高程精度0.8m的DEM结果,精度可满足国家1∶10000地形制图的要求。冰川DEM采用TanDEM-X双站InSAR数据,采用改进的SAR干涉处理方法,顾及了双站InSAR在成像几何和相位解缠等方面的特点,高分辨率、高精度地生成了上述两个典型冰川的表面DEM。该数据集采用Geotiff格式,每个典型冰川DEM存储为一个文件夹。 数据的详细情况见青藏高原典型冰川DEM数据集-数据说明。
江利明
未来人口情景预测以2005年为基准年,采用人口阻滞增长模型,不仅能够较好地描述人口与许多生物数量的变化规律,而且在经济领域也有广泛的应用。城市化率的预测采用城市化Logistics模型。依据已有的城市化水平序列值,通过非线性回归求出参数式中参数,建立预测模型。城市人口数量由预测的人口数乘以城镇化率求出。数据采用非农业人口。采用logistic模型预测流域未来各县市国民生产总值,然后根据未来各县市各时段经济发展水平(用人均GDP表示)设定各时段相应的产业结构情景,预测各次产业产值。我国及研究区产业结构的变化趋势滞后于GDP增长速度,因而根据设定的研究区未来产业结构情景需要进行了适当调整。
钟方雷
大多数仪器气候记录的长度相对较短,限制了对气候变化的研究,因此有必要借助代理数据将记录延续到过去。直到20世纪40年代后期,才有了足够质量和空间分辨率的大气数据来确定气候变化的主要模式,如北美太平洋模式和太平洋年代际振荡。全球冰芯除了分布在南北两极以及第三极,阿拉斯加也有山地冰川分布,在该区域获得的冰芯数据,对于揭示北美地区气候,对于揭示低纬度与高纬度北极地区气候变化具有主要的意义。 各变量的物理意义: 第一列:时间;第二列:积累率数据;第三列:氧同位素数据值
杜志恒
未来人口情景预测以2005年为基准年,采用人口阻滞增长模型,不仅能够较好地描述人口与许多生物数量的变化规律,而且在经济领域也有广泛的应用。城市化率的预测采用城市化Logistics模型。依据已有的城市化水平序列值,通过非线性回归求出参数式中参数,建立预测模型。城市人口数量由预测的人口数乘以城镇化率求出。数据采用非农业人口。采用logistic模型预测流域未来各县市国民生产总值,然后根据未来各县市各时段经济发展水平(用人均GDP表示)设定各时段相应的产业结构情景,预测各次产业产值。我国及研究区产业结构的变化趋势滞后于GDP增长速度,因而根据设定的研究区未来产业结构情景需要进行了适当调整。
杨林生, 钟方雷
雪水当量(积雪深度与密度之积)是反映地表积雪量变化的重要因子,是地表水文模型和气候模式中的一个重要参数。青藏高原作为亚洲水塔,多条大江大河补给主要依靠高原上冰川或积雪的融化。基于被动微波对积雪监测的敏感性,本数据实现了长时间序列的高亚洲地区雪水当量的反演。数据集包含日雪水当量、月雪水当量以及每五日雪水当量,可服务于当地水文、畜牧业生产等方面。
邱玉宝
高亚洲地区是中纬度全球变化敏感区和研究的热点区域,其境内湖泊星罗棋布,湖冰冻融参数是全球变化的关键敏感因子之一。由于冰水介电常数差异大,高重访率且对天气不敏感的星载被动微波遥感可实现湖冰冻融状态的快速监测。本数据集依据微波辐射计像元内湖泊和陆表的面积比例,应用混合像元分解方法获取了像元(亚像元级)的湖泊亮温信息,实现高亚洲地区被动微波遥感亚像元级湖冰冻融监测,并采用多种被动微波数据,共计获得高亚洲区域 2002-2016 年 51 个中大型时间序列湖泊亮温数据和冻融状态信息。以无云MODIS 光学产品为验证数据,在高亚洲不同区域,选取可可西里湖、达则错、库赛湖等三个大小不一的湖泊进行冻融判别验证,结果表明微波和光学遥感所获取的湖冰冻结和融化参数具有较高的一致性,其相关系数可达0.968 与 0.987。本数据集包含湖泊的时间序列亮温值和湖冰冻融参数,可进一步对湖泊开展特征参数反演,以及提升对高亚洲地区的湖冰冻融的理解,为高亚洲地区气候、环境变化以及高亚洲对全球气候变化响应模型提供数据基础。数据集由 2 部分数据组成,其一为 2002-2016 年高亚洲区域 51个湖泊的被动微波遥感亮温数据集,观测时间间隔为 1~2 天;其二是由湖泊亮温数据集判断所获得的湖冰冻融数据集。文件名分别为:最邻近法与像元分解的湖泊亮温数据 .zip(12 MB),2002–2016 高亚洲 51 个湖泊湖冰冻融数据集 .xls(0.1 MB)
邱玉宝
青藏高原土壤细菌多样性数据集提供了青藏高原土壤表层(0-2厘米)微生物分布特征。样品采集时间为2015年7月1日至7月15日,包含草甸,草原,荒漠3种生态系统。土壤样品用冰袋保存,运回北京青藏高原研究所生态实验室。土壤DNA通过MO BIO PowerSoil DNA试剂盒提取。土壤表层样品采集后用液氮保存,运回悉尼实验室,通过FastPrep DNA试剂盒提取。提取后的DNA样品使用515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 909r (5'-GGACTACHVGGGTWTCTAAT-3')扩增16S rRNA基因片段。扩增后的片段通过Illumina Miseq PE250方式测序,原始数据通过Mothur软件分析。首先去除测序质量不佳序列,之后进行排序并去除嵌合体序列。之后计算序列之间相似度,相似度在97%以上的序列聚类为一个OTU,并定义OTU代表序列。OTU代表序列通过与Silva数据库进行比对,在可靠性大于>80%的情况下鉴定到属一级水平。本数据系统的比较了青藏高原微生物的多样性,对研究微生物在青藏高原的分布具有重大意义。
计慕侃
由美国发起的格陵兰冰盖计划 (GISP2),提供了一个10万多年的氧同位素详细资料,几乎覆盖了整个冰期-间冰期循环。该数据记录了过去818-1987年氧同位素变化,其中清晰记录小冰期为该过去1000年来最冷的时期。其中1850-1987年呈现出波动增温,其变化与格陵兰获取的GRIP、NGRIP及最新的NEEM冰芯变化一致,反映了雪冰记录在格陵兰冰盖具有很好的一致性。 各变量的物理意义: 第一列:冰芯深度;第二列:氧同位素值;第三列:时间
杜志恒
本数据集考虑到搭载在Aqua卫星上的高级微波扫描辐射计(AMSR-E)和中分辨率成像光谱仪(MODIS)的同步观测特点,采用MODIS的地表温度和大气水汽数据作为输入,通过考虑大气影响的发射率估算模型,生产了全球晴空条件下AMSR-E传感器运行期间(2002年6月~2011年10月)的陆表多通道双极化微波瞬时发射率。通过产品低频无线电信号影响、数据间比对、统计分析、不同地表覆盖条件的发射率特征、频率依赖和相关性研究等开展验证性分析,结果表明瞬时发射率的动态细节丰富,月内日变化标准差在0.02以内,其时空变化、频率依赖和相关性符合自然物理过程的理解。此套数据集包括AMSR-E全生命周期的全球陆表逐日、侯、旬、半月及月产品,可用于开展星载被动微波遥感模拟、陆面模型以及陆表温度、积雪、大气降水/水汽/可降水量等反演研究。数据的投影坐标采用标准的EASE-GRID投影,数据存储方式为二进制浮点型格点(矩阵大小为1383*586),数据获得之后可用ENVI/IDL等软件或者相应程序代码以二进制文件的方式读取。
邱玉宝
采用供需平衡的分析方法,分别计算流域总体及各县区水资源供给量及需求量的基础上,评估流域水资源系统脆弱性。采用IPAT等式设置未来水资源需求情景,即通过设定未来的人口增长率、经济增长速度、单位GDP耗水量等变量来建立需水情景。以2005年为基准年,预测未来2010-2050年的各县市水资源需求情景。人口规模、经济规模采用配套预测数据。 应用瑞典水文气象研究所HBV概念性水文模型的基本结构,设计了在气候变化下流域变化趋势的模型,以冰川融化情景为模型的输入,构建气候变化下出山径流情景。依据流域水资源配置的国家地方规定设置配水方案,综合计算水资源供给量。综合供需情况,以缺水率为指标评价水资源系统脆弱性。通过计算流域主要县市的(小麦生产)土地压力指数,分析了流域气候变化、冰川融化及人口增长情景下土地资源的供需平衡,评价了农业系统脆弱性。分别运用迈阿密公式及HANPP模型计算了未来情景下,流域各主要县市净初级生物生产量及初级生物量的人类占用,以供需平衡角度评估生态系统脆弱性。
杨林生, 钟方雷
未来人口情景预测以2000年为基准年,采用人口阻滞增长模型,不仅能够较好地描述人口与许多生物数量的变化规律,而且在经济领域也有广泛的应用。城市化率的预测采用城市化Logistics模型。依据已有的城市化水平序列值,通过非线性回归求出参数式中参数,建立预测模型。 城市人口数量由预测的人口数乘以城镇化率求出。数据采用非农业人口。采用logistic模型预测流域未来各县市国民生产总值,然后根据未来各县市各时段经济发展水平(用人均GDP表示)设定各时段相应的产业结构情景,预测各次产业产值。我国及研究区产业结构的变化趋势滞后于GDP增长速度,因而根据设定的研究区未来产业结构情景需要进行了适当调整。
钟方雷
“China Collection 1.0”气溶胶光学厚度(AOD)数据集采用可见光波段遥感反演方法制作。原始数据来自Terra和Aqua上搭载的MODIS传感器。数据覆盖时间从2002年到2011年,时间分辨率为逐日,覆盖范围为亚洲大陆,空间分辨率为0.1°。遥感反演方法采用自主研发的SRAP算法反演了陆地上空的气溶胶光学厚度,算法考虑了地表的BRDF特性,适用于亮地表和暗地表上的气溶胶光学厚度反演。此外,叠加了MOD04/MYD04海洋上空的气溶胶产品。通过实测站点的验证表明亚洲气溶胶光学厚度数据相对偏差在20%以内。数据每一天存放一个hdf文件,每个文件由550nm处的Terra AOD和Aqua AOD组成。
光洁, 薛勇
采用供需平衡的分析方法,分别计算流域总体及各县区水资源供给量及需求量的基础上,评估流域水资源系统脆弱性。 采用IPAT等式设置未来水资源需求情景,即通过设定未来的人口增长率、经济增长速度、单位GDP耗水量等变量来建立需水情景。以2005年为基准年,预测未来2010-2050年的各县市水资源需求情景,人口规模、经济规模采用配套预测数据。 应用瑞典水文气象研究所HBV概念性水文模型的基本结构,设计了在气候变化下流域变化趋势的模型,以冰川融化情景为模型的输入,构建气候变化下出山径流情景。依据流域水资源配置的国家地方规定设置配水方案,综合计算水资源供给量。综合供需情况,以缺水率为指标评价水资源系统脆弱性。通过计算流域主要县市的(小麦生产)土地压力指数,分析了流域气候变化、冰川融化及人口增长情景下土地资源的供需平衡,评价了农业系统脆弱性。分别运用迈阿密公式及HANPP模型计算了未来情景下,流域各主要县市净初级生物生产量及初级生物量的人类占用,以供需平衡角度评估生态系统脆弱性。
杨林生, 钟方雷
未来人口情景预测以2005年为基准年,采用人口阻滞增长模型,不仅能够较好地描述人口与许多生物数量的变化规律,而且在经济领域也有广泛的应用。城市化率的预测采用城市化Logistics模型。依据已有的城市化水平序列值,通过非线性回归求出参数式中参数,建立预测模型。城市人口数量由预测的人口数乘以城镇化率求出。 数据采用非农业人口。采用logistic模型预测流域未来各县市国民生产总值,然后根据未来各县市各时段经济发展水平(用人均GDP表示)设定各时段相应的产业结构情景,预测各次产业产值。 我国及研究区产业结构的变化趋势滞后于GDP增长速度,因而根据设定的研究区未来产业结构情景需要进行了适当调整。
杨林生, 钟方雷
青藏高原主体是青海省和西藏自治区,其青海省和西藏自治区经济社会数据则是统筹自然科学基础数据进行分析青藏高原人口、资源、环境和经济社会可持续发展分析和评估的基础。一般情况下,各省区统计年鉴均为纸质版、光盘版,用户均需要进行二次编辑才能使用。 本数据集主要依托青海省和西藏自治区统计年鉴原始数据,进行数据转换,综合集成当前经济社会数据集。数据覆盖时间从2007年到2016年,时间分辨率为年,覆盖范围为青藏高原青海省和西藏自治区,空间分辨率为地市州行政单元。 数据包括人口、经济、财政、农林牧副渔产业、固定资产投资、教育卫生等方面。
王世金
从公元1000年到现在大气中甲烷的浓度在南北极冰芯呈现显著的上升,本数据来自澳大利亚塔斯马尼亚实验室,对冰芯样品采取湿法提取,通过对所有样品使用相同的测量程序和校准, 获取了高分辨率数据。数据结果与瑞士伯尔尼大学、丹麦哥本哈根大学以及美国俄亥俄州大学等国际著名冰芯温室气体实验室结果一致。 各变量的物理意义: 第一列:时间;第二列:甲烷浓度数值
杜志恒
微波辐射计数据集为SMMR(1978-1987)、SSM/I(1987-2009)和SSMIS(2009-2015)亮温数据,覆盖时间从1978年到2015年,空间分辨率为25 km,南极数据每个文件由316*332的栅格组成,北极冻融数据每个文件由304*448的栅格组成;微波散射计数据集为QScat(2000-2009)和ASCAT(2009-2015)后向散射系数据,覆盖时间从2000年到2015年,空间分辨率为4.45km.南极数据每个文件由1940*1940的栅格组成,北极数据每个文件由810*680的栅格组成。时间分辨率为逐日,覆盖范围为南北极冰盖。
李新武, 梁雷
利用2003-2013年11景的Modis1B数据(NSIDC网站发布的冰架Modis1B数据),采用亚像元互相关方法提取南极Amery冰架表面流速,应用COSI-Corr软件提取冰架流速,获取近十年的年均流速时间序列,由于研究区域内缺乏实地观测,因此利用稳定区域的偏移量值评估冰流结果的精度,冰流误差约为±50m/year。冰流场数据覆盖时间从2003年到2013年,时间分辨率为逐年,覆盖范围为Amery区域,空间分辨率为500m。每年的冰流场数据存放一个Geotiff文件。 数据的详细情况见Amery冰流场-数据说明。
江利明
在全球气候变暖背景下,世界范围内山地冰川消融强烈,以退缩为主,但现有野外观测发现,喀喇昆仑地区大部分冰川保持稳定或前进状态,为“喀喇昆仑异常”。冰川表面流速是研究冰川动力学和物质平衡的重要参数,研究喀喇昆仑中部区域冰川流速时空变化特征对于认识该区域冰川动力学特征及其对气候变化的响应具有重要的意义。 选取1999-2003年获取的四对Landsat 7 ETM+影像(影像获取时间分别为:1999.7.16, 2000.6.16, 2001.7.21, 2002.8.9, 2002.4.19, 2003.3.21),采用全色波段,分辨率为15 m,对每对影像进行精确配准,然后对配准后的两景影像进行互相关计算,获取1999-2003年喀喇昆仑中部区域冰川表面流速。由于研究区域内缺乏流速实地观测数据,因此利用稳定区域的偏移量值评估冰流结果的精度,冰川表面流速误差约为±7 m/year。 冰流场数据覆盖时间从1999年到2003年,时间分辨率为逐年,覆盖范围为喀喇昆仑中部区域,空间分辨率为30 m,每年的冰流场数据存放一个Geotiff文件。 数据的详细情况见喀喇昆仑中部区域冰流场-数据说明。
江利明
基于中国科学院资源环境科学数据中心全球100万基础地理数据(2010年),在GIS里提取北极八国(美国、加拿大、俄罗斯、挪威、丹麦(含Greenland格陵兰和法鲁Faro岛)、瑞典、芬兰、冰岛)铁路和公路网,分国别保存。数据格式是arcgis的shp格式,投影方式为GCS_WGS_1984.其中铁路网数据源见http://www.resdc.cn/data.aspx?DATAID=208; 道路网数据源见:http://www.resdc.cn/data.aspx?DATAID=207
杨林生, 王利
南极冰盖高程数据采用雷达高度计数据(Envisat RA-2)和激光雷达数据(ICESat/GLAS)制成。为提高ICESat/GLAS数据的精度,采用了五种不同的质量控制指标对GLAS数据进行处理,滤除了8.36%的不合格数据。这五种质量控制指标分别针对卫星定位误差、大气前向散射、饱和度及云的影响。同时,对Envisat RA-2数据进行干湿对流层纠正、电离层纠正、固体潮汐纠正和极潮纠正。针对两种不同的测高数据,提出了一种基于Envisat RA-2和GLAS数据光斑脚印几何相交的高程相对纠正方法,即通过分析GLAS脚印点与Envisat RA-2数据中心点重叠的点对,建立这些相交点对的高度差(GLAS-RA-2)与表征地形起伏的粗糙度之间的相关关系,对具有稳定相关关系的点对进行Envisat RA-2数据的相对纠正。通过分析南极冰盖不同区域的测高点密度,确定最终DEM的分辨率为1000 m。考虑到南极普里兹湾和内陆地区的差异性,将南极冰盖分为16个区,利用半方差分析确定最佳插值模型和参数,采用克吕金插值方法生成了1000 m分辨率的南极冰盖高程数据。利用两种机载激光雷达数据和我国多次南极科考实测的GPS数据对新的南极DEM进行了验证。结果显示,新的DEM与实测数据的差值范围为3.21—27.84 m,其误差分布与坡度密切关系。
黄华兵
未来人口情景预测以2005年为基准年,采用人口阻滞增长模型,不仅能够较好地描述人口与许多生物数量的变化规律,而且在经济领域也有广泛的应用。城市化率的预测采用城市化Logistics模型。依据已有的城市化水平序列值,通过非线性回归求出参数式中参数,建立预测模型。城市人口数量由预测的人口数乘以城镇化率求出。数据采用非农业人口。采用logistic模型预测流域未来各县市国民生产总值,然后根据未来各县市各时段经济发展水平(用人均GDP表示)设定各时段相应的产业结构情景,预测各次产业产值。我国及研究区产业结构的变化趋势滞后于GDP增长速度,因而根据设定的研究区未来产业结构情景需要进行了适当调整。
钟方雷, 杨林生
该数据集包含了2012年10月14日至2013年12月31日的黑河水文气象观测网上游阿柔超级站的大孔径闪烁仪观测数据。上游阿柔超级站分别架设了两台型号为BLS450_AR和zzlas的大孔径闪烁仪,北塔为zzlas的接收端和BLS450_AR的发射端,南塔为zzlas的发射端和BLS450_AR的接收端。其中zzlas自2012年10月14日开始观测,BLS450_AR的观测时间为2013年8月9日至2013年12月10日。站点位于青海省祁连县阿柔乡草达坂村,下垫面是高寒草地。北塔的经纬度是100.4712E,38.0568N,南塔的经纬度是100.4572E,38.0384N,海拔高度约3033m。大孔径闪烁仪的有效高度9.5m,光径路线长度是2390m,BLS450和zzlas的采样频率分别为5Hz和1Hz,平均为1min输出。 大孔径闪烁仪原始观测数据为1min,发布的数据为经过处理与质量控制的30分钟数据,其中感热通量主要是结合自动气象站观测数据,基于莫宁-奥布霍夫相似理论通过迭代计算得到。主要的质量控制步骤包括:(1)剔除Cn2达到饱和的数据(BLS450_AR:Cn2 >7.25E-14,zzlas:Cn2 >7.84 E-14);(2)剔除解调信号强度较弱的数据(BLS450_AR:Average X Intensity<1000,zzlas:Demod>-20mv);(3)剔除降水时刻的数据;(4)剔除稳定条件下的弱湍流的数据(u*小于0.1m/s)。在迭代计算过程中,对于BLS450_AR,选取Thiermann and Grassl, 1992的稳定度普适函数;对于zzlas,选取Andreas, 1988的稳定度普适函数。 关于发布数据的几点说明:(1)上游LAS数据以BLS450_AR为主,缺失时刻由zzlas观测补充,两者都缺失则以-6999标记。2012年11月10日-11月23日、2013年3月14日-4月10日由于zzlas信号出现漂移,期间数据被剔除; 2013年4月10日-5月31日由于LAS塔倾斜,期间无数据。(2)数据表头:Date/Time :日期/时间(格式:yyyy-m-d h:mm),Cn2 :空气折射指数结构参数(单位:m-2/3),H_LAS :感热通量(单位:W/m2)。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考Liu et al.(2011)。
李新, 车涛, 徐自为, 张阳, 谭俊磊
采用供需平衡的分析方法,分别计算流域总体及各县区水资源供给量及需求量的基础上,评估流域水资源系统脆弱性。采用IPAT等式设置未来水资源需求情景,即通过设定未来的人口增长率、经济增长速度、单位GDP耗水量等变量来建立需水情景。以2005年为基准年,预测未来2010-2050年的各县市水资源需求情景。人口规模、经济规模采用配套预测数据。应用瑞典水文气象研究所HBV概念性水文模型的基本结构,设计了在气候变化下流域变化趋势的模型,以冰川融化情景为模型的输入,构建气候变化下出山径流情景。依据流域水资源配置的国家地方规定设置配水方案,综合计算水资源供给量。综合供需情况,以缺水率为指标评价水资源系统脆弱性。通过计算流域主要县市的(小麦生产)土地压力指数,分析了流域气候变化、冰川融化及人口增长情景下土地资源的供需平衡,评价了农业系统脆弱性。分别运用迈阿密公式及HANPP模型计算了未来情景下,流域各主要县市净初级生物生产量及初级生物量的人类占用,以供需平衡角度评估生态系统脆弱性。
杨林生, 钟方雷
该数据为2005年格陵兰岛地区ENVISAT-1卫星ASAR传感器获取的Wide Swath模式Level 1B级SAR数据,幅宽400km,空间分辨率为75m,绝对定位精度约为200米。 该SAR数据在存储时都是以时间增长为序的方式存储的,这使的下行轨道的图象为左右镜象,而上行轨道的图象为上下镜象。 该数据的命名规则如下例所示: ASA_IMS_1PPIPA 20050402_095556_000000162036_00065_16151_0388.N1 ASA: 产品标识,ASAR传感器 IMS: 数据的接收、处理信息(成像模式,如WS,WSS,IM,...) 1PPIPA:订制的编号 20050402: 数据获取的时间(UTC时间) 095556:地理位置(开始、结束) 000000162036:卫星轨道信息 00065:产品信任数据 16151:产品大小、结构信息 0388 => 校验码
惠凤鸣
南北极细菌分布数据集提供了南北极细菌分布特征。样品采集时间为13/12/2005至8/12/2006,包含北极3个地区52个样品(Spitsbergen Slijeringa,Spitsbergen Vestpynten,及Alexandra Fjord_Highlands),南极5个地区171个样品(Mitchell Peninsula,Casey station main power house,Robinsons Ridge,Herring Island,Browning Peninsula)。土壤表层样品采集后用液氮保存,运回悉尼实验室,通过FastPrep DNA试剂盒提取。提取后的DNA样品使用27F (5'-GAGTTTGATCNTGGCTCA-3' and 519R (5'-GTNTTACNGCGGCKGCTG-3')扩增16S rRNA基因片段。扩增后的片段通过454方式测序,原始数据通过Mothur软件分析。首先去除测序质量不佳序列,之后进行排序并去除嵌合体序列。之后计算序列之间相似度,相似度在97%以上的序列聚类为一个OTU,并定义OTU代表序列。OTU代表序列通过与Silva数据库进行比对,在可靠性大于>80%的情况下鉴定到属一级水平。本数据系统的比较了南极东部以及北极微生物的多样性,对研究微生物在南北极的分布具有重大意义。
计慕侃
北极阿拉斯加站点气溶胶光学厚度数据是基于美国能源部大气辐射观测计划在北极阿拉斯加站点的观测数据产品而形成,数据覆盖时间从1998年到2016年,时间分辨率为逐小时,覆盖站点为北极阿拉斯加站点,经纬度坐标为(71°19′22.8″N, 156°36′32.4″ W)。观测数据来源为MFRSR仪器观测的辐射数据反演获得,所包含光学特征变量为气溶胶光学厚度,观测反演误差范围约为15%。数据格式为nc格式。
赵传峰
全南极高分辨率遥感影像镶嵌图利用美国陆地卫星7号于1999-2003年间拍摄的1073幅影像以及覆盖南纬82.5度以南的中分辨率MODIS影像(拍摄于2005年)处理合成得到。基于该镶嵌图,结合南极科研需求,采用计算机自动解译和人工辅助相结合的方法,将南极洲地表覆盖划分为6大类:蓝冰、裂隙、裸岩、水体、冰碛、粒雪。经统计得到上述各类的面积和所占比例分别为:225207.29平方千米(1.651%),7153.36平方千米(0.052%),72958.04平方千米(0.535%),189.43平方千米(0.001%),310.76平方千米(0.003%),13337392.66平方千米(97.758%)。该地图为近似真彩色合成的卫星影像图,各地表覆盖类型采用不同的色块表示。该图主要为极地各学科科学研究、地理教育及科普等提供参考。
惠凤鸣
青藏高原湖水微生物多样性数据。样品采集时间为2015年7月1日至7月15日,包含28个湖泊(巴木措,白马湖,班戈盐湖,班公湖,崩错,别若则错,错萼措,错愕(平措北),达瓦措,当穹错,当惹雍措,洞措,鄂雅错琼,公珠措,果根错,甲热布错,玛旁雍错,纳木错,聂尔错(盐湖),诺尔玛措,朋彦错,蓬错,枪勇,色林错,吴如错,物玛错,扎日南木措,扎西措,),138个样品。盐度梯度为0.07-118 ppm。 DNA提取方法:湖水过滤到0.45膜上,然后通过MO BIO PowerSoil DNA试剂盒提取DNA。16S rRNA基因片段扩增引物为515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 909r (5'-GGACTACHVGGGTWTCTAAT-3')。测序方式为Illumina MiSeq PE250,原始数据通过Mothur软件分析,包括quality filtering, chimera removal, 序列分类依据Silva109数据库,古菌、真核和未知来源序列已被移除。OTU以97%相似度分类,然后只在数据库中出现一次的序列被移除。最后每个样品被重取样到7,230序列/样品。 GPS坐标,进化信息,环境因子见数据内。
计慕侃
南北极冰盖冻融数据集采用微波辐射计和微波散射计两种数据获取。微波辐射计数据覆盖时间从1978年到2015年,空间分辨率为25 km;微波散射计数据覆盖时间从2000年到2015年,空间分辨率为4.45km.时间分辨率为逐日,覆盖范围为南北极冰盖。基于微波辐射计的遥感反演方法采用改进的基于小波冰盖冻融探测算法,算法考虑冰盖冻融亮温特性在时间上的变化,首先利用小波变换对格陵兰所有冰盖区域的长时间亮度温度数据进行小波多尺度分解,在不同尺度下对边缘信息进行分析。再次,采用方差分析的方法将冰盖融化和重新冻结过程产生的边缘信息从噪声中分离出来。基于已提取的冰盖长时间亮度温度变化边缘信息,利用广义高斯模型来确定干雪和湿雪分类的最优边缘阈值, 从而探测出格陵兰冰盖发生融化的区域。最后,基于空间自动纠错的原理,运用空间邻域纠错算子对由噪音引起的错误结果进行探测,并进行人工纠错。长时间序列星载被动微波亮度温度数据来自SMMR、SSM/I和SSMI/S三个传感器。为保证不同传感器亮度温度在时间上的一致性,在冻融提取之前对不同传感器亮度温度进行了交叉订正。通过实测站点的验证表明格陵兰冰盖冻融探测精度在70%以上。基于微波辐射计的遥感反演方法考虑积雪特性在时空和空间上的变化,首先提取散射计数据的DVPR时间序列数据,有效利用散射计数据的高时间分辨率,同时利用通道差去除地形带来的影响;随后利用广义高斯模型对每一个采样点时间序列的方差值进行拟,以此来区分出干湿雪点,即确定融化范围,这种广义高斯模型相比于传统的双高斯模型需要的输入参数少,得到的阈值也具有唯一性;最后利用移动窗分割算法来精确找到湿雪点的融化开始时间、 结束时间以及持续时间, 可以有效地去除融化或非融化时期的温度突变所带来的影响。长时间序列星载微波散射计数据来自QSCAT和ASCAT两个传感器。通过实测站点的验证表明南极冰盖冻融探测精度在70%以上。数据每一天存放一个bin文件,基于微波辐射计的南极冻融数据每个文件由316*332的栅格组成,格陵兰冰盖冻融数据每个文件由304*448的栅格组成;基于微波散射计的南极冻融数据每个文件由810*680的栅格组成,格陵兰冰盖冻融数据每个文件由810*680的栅格组成(0值:非融化区域,1值:融化区域)。
李新武, 梁雷
该数据集包含了黑河水文气象观测网上游阿柔站的大孔径闪烁仪通量观测数据。上游阿柔站分别架设了两台型号为德国BLS450_AR和国产zzlas的大孔径闪烁仪,北塔为zzlas的接收端和BLS450_AR的发射端,南塔为zzlas的发射端和BLS450_AR的接收端。其中zzlas观测时间段为2014年1月1日至2014年12月31日,BLS450_AR的观测时间为2014年1月19日至2014年12月12日。站点位于青海省祁连县阿柔乡草达坂村,下垫面是高寒草地。北塔的经纬度是100.4712E,38.0568N,南塔的经纬度是100.4572E,38.0384N,海拔高度约3033m。大孔径闪烁仪的有效高度9.5m,光径长度是2390m,采样频率是1min。 大孔径闪烁仪原始观测数据为1min,发布的数据为经过处理与质量控制后的30min数据,其中感热通量主要是结合自动气象站观测数据,基于莫宁-奥布霍夫相似理论通过迭代计算得到,主要的质量控制步骤包括:(1)剔除Cn2达到饱和的数据(BLS450_AR:Cn2 >7.25E-14,zzlas:Cn2 >7.84 E-14);(2)剔除解调信号强度较弱的数据(BLS450_AR: Average X Intensity<1000,zzlas: Demod>-20mv);(3)剔除降水时刻的数据;(4)剔除稳定条件下的弱湍流的数据(u*小于0.1m/s)。在迭代计算过程中,对于BLS450_AR,选取Thiermann and Grassl, 1992的稳定度普适函数;对于zzlas,选取Andreas, 1988的稳定度普适函数。详细介绍请参考Liu et al.(2011, 2013)。 关于发布数据的几点说明:(1)上游LAS数据以BLS450_AR为主,缺失时刻由zzlas观测补充,两者都缺失则以-6999标记。(2)缺失时段:2014年8月10日至16日、2014年10月3日至13日、2014年10月17日至20日由于仪器故障,期间数据缺失。(3)数据表头:Date/Time :日期/时间(格式:yyyy-m-d h:mm),Cn2 :空气折射指数结构参数(单位:m-2/3),H_LAS :感热通量(单位:W/m2)。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储,详细信息请查参考文献。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考Liu et al.(2011)。
刘绍民, 李新, 车涛, 徐自为, 张阳, 谭俊磊
该数据集包含了黑河水文气象观测网上游阿柔站的大孔径闪烁仪通量观测数据。上游阿柔站分别架设了两台型号为BLS450和zzlas的大孔径闪烁仪,北塔为zzlas的接收端和BLS450的发射端,南塔为zzlas的发射端和BLS450的接收端。其中zzlas观测时间段为2015年1月1日至12月31日; BLS450前期观测时间为2015年1月13日至2015年3月16日,后期更换为另一台BLS450,观测时间为2015年4月15日至2015年12月31日。站点位于青海省祁连县阿柔乡草达坂村,下垫面是高寒草地。北塔的经纬度是100.4712E,38.0568N,南塔的经纬度是100.4572E,38.0384N,海拔高度约3033m。大孔径闪烁仪的有效高度9.5m,光径长度是2390m,采样频率是1min。 大孔径闪烁仪原始观测数据为1min,发布的数据为经过处理与质量控制后的数据,其中感热通量主要是结合自动气象站观测数据,基于莫宁-奥布霍夫相似理论通过迭代计算得到,主要的质量控制步骤包括:(1)剔除Cn2达到饱和的数据(BLS450:Cn2 >7.25E-14,zzlas:Cn2 >7.84 E-14);(2)剔除解调信号强度较弱的数据(BLS450:Average X Intensity<1000(2015.1.13- 2015.3.16),Mininum X Intensity <50(2015.4.15-2015.12.31);zzlas:Demod>-20mv);(3)剔除降水时刻的数据;(4)剔除稳定条件下的弱湍流的数据(u*小于0.1m/s)。在迭代计算过程中,对于BLS450,选取Thiermann and Grassl(1992)的稳定度普适函数;对于zzlas,选取Andreas, 1988的稳定度普适函数。详细介绍请参考Liu et al(2011, 2013)。 关于发布数据的几点说明:(1)上游LAS数据以BLS450为主,缺失时刻由zzlas观测补充,两者都缺失则以-6999标记。(2)数据表头:Date/Time :日期/时间(格式:yyyy/m/d h:mm),Cn2 :空气折射指数结构参数(单位:m-2/3),H_LAS :感热通量(单位:W/m2)。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储,详细信息请查参考文献。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考Liu et al. (2011)。
刘绍民, 李新, 车涛, 徐自为, 张阳, 谭俊磊
黑河流域月均植被指数数据是基于MODIS 的1km及250m NDVI产品,从250m产品中提出黑河流域格点值作为精度控制,对1km产品利用HASM方法修正。利用HASM方法对多源NDVI数据进行融合获得的黑河流域2001-2011年月均植被指数。分辨率:1KM*1KM 黑河流域平均降水数据集采用黑河计划数据管理中心提供的黑河流域及周边地区21个气象常规观测站及黑河周边13个全国基准站的站点数据信息,对逐日降水进行统计整理,计算逐个站点的1961-2010年多年逐日降水数据。对其进行空间平稳性分析,计算变异系数,若变异系数大于100%,则采用地理加权回归计算站点与地理地形因素关系,得逐日降水分布趋势;若变异系数小于等于100%,则采用普通最小二乘回归计算站点降水值与地理地形因素(经纬度、高程)的关系,得逐日降水分布趋势;对去掉趋势后的残差采用HASM(High Accuracy Surface Modeling Method)进行拟合修正。最后将趋势面结果与残差修正结果相加即得1961-2010年黑河流域多年日平均降水分布。时间分辨率:1961-2010年多年日平均降水。空间分辨率:500m。
岳天祥, 赵娜
该数据集包含了2015年1月1日至2017年7月31日黑河中下游绿洲植被生态属性的观测数据,共包含355条数据,其中,胡杨208条,柽柳147条。生态属性包括4组生态参数共15类74个指标,具体如下: 植被结构参数(5类25个指标): 盖度:总盖度、乔灌草三层分盖度、冠幅平均直径; 高度:乔灌草三层高度、冠层厚度、凋落物厚度、苔藓层厚度、最大根深; 密度:乔木层密度、乔木平均胸径; 叶面积指数:乔灌草三层最大叶面积指数、最小叶面积指数; 物候期:开始展叶期、盛叶期、开始落叶期、完全落叶期。 植被生产力参数(3类16个指标): 地上生物量:总生物量、乔灌草三层茎生物量、叶生物量; 根生物量:根生物量、0-5、5-15、15-30、30-50、50-100、100-250cm细根生物量; 其他生物量:凋落物层、苔藓层生物量和碳储量。 生理生态参数(4类24个指标): 生物量分配:根茎叶分配比例; 元素含量:根茎叶碳含量、碳氮比、凋落物碳含量、苔藓碳含量; 叶片形状:比叶面积、叶片长宽、叶倾角; 气体交换特征:叶水势、净光合速率、气孔导度、蒸腾速率、气温、胞间CO2浓度、光合有效辐射等; 植被水文参数(3类9个指标): 降雨再分配:最大截留能力、冠层截留、穿透雨、树干茎流‘ 产流:产流量、产流系数; 蒸发散:植物蒸腾量、土壤蒸发量、土壤蒸发深度。
李小雁, 赵文武
样地调查数据为,于2013年8月份,在天涝池流域设置森林样地30块,样地规格为10 m×20 m,样地长边与山坡走向平行,其中青海云杉林26块,祁连圆柏林2块,云杉圆柏混交林2块,在样地内,采用围尺测量每株树木的胸径(树干1.3 m高度处的直径),采用手持超声波测高器测量每株树木的树高、枝下高(树冠下端第一活枝的高度),采用皮尺测量南北方向和东西方向冠幅,利用差分GPS对样地进行定位.以样地碳储量数据为优化控制条件,以Kriging插值得到的生物量空间分布图驱动场,采用HASM算法模拟天涝池森林生物量空间分布图,模拟结果符合研究区的植被分布规律,获得较好的效果。分辨率1m
岳天祥, 赵娜
该数据集包含了2016年1月1日至2016年12月31日的宇宙射线仪器(crs)观测数据。站点位于甘肃省张掖市大满灌区农田内,下垫面是玉米地。观测点的经纬度是100.3722E, 38.8555N,海拔1556m,仪器探头底部距地面0.5m,采样频率是1小时。 宇宙射线仪器的原始观测项目包括:电压Batt(V)、温度T(℃)、相对湿度RH(%)、气压P(hPa)、快中子数N1C(个/小时)、热中子数N2C(个/小时)、快中子采样时间N1ET(s)及热中子采样时间N2ET(s)。发布的数据为经过处理计算后的数据,数据表头包括:Date Time(日期 时间)、P(气压 hPa)、N1C(快中子数 个/小时)、N1C_cor(气压订正的快中子数 个/小时)和VWC(土壤体积含水量 %),其处理的主要步骤包括: 1) 数据筛选 数据筛选共四条标准:(1)剔除电压小于和等于11.8伏特的数据;(2)剔除空气相对湿度大于和等于80%的数据;(3)剔除采样时间间隔不在60±1分钟内的数据;(4) 剔除快中子数较前后一小时变化大于200的数据。此外缺失数据用-6999补充。 2) 气压订正 根据仪器说明手册中提到的快中子气压订正公式,对原始数据进行气压订正,得到订正后的快中子数N1C_cor。 3) 仪器率定 在计算土壤水分的过程中需要对计算公式中的N0进行率定。N0为土壤干燥条件下的快中子数,通常使用测量源区内的土样得到实测土壤水分(或者通过比较密集的土壤水分无线传感器获取)θm(Zreda et al. 2012)和对应时间段内的快中子校正数据N,再通过公式反求得到N0。 在此,根据仪器源区内的Soilnet土壤水分数据对仪器进行率定,建立土壤体积含水量θv和快中子之间的关系。分别选取干湿状况差异比较明显的2012年6月26日-27日和7月16日-17日四天的数据,其中6月26日-27日率定数据显示土壤水分较小,因此选取4厘米、10厘米和20厘米的三个值平均值作为率定数据,其变化范围为22%-30%,而7月16日-17日率定数据显示土壤水分较大,因此选取4厘米、10厘米的两个值平均值作为率定数据,其变化范围为28%-39%,最后平均N0为3597。 4) 土壤水分计算 根据公式,计算得到每小时的土壤含水量数据。 水文气象网或站点信息请参考Liu et al. (2018),观测数据处理请参考Zhu et al. (2015)。
刘绍民, 朱忠礼, 徐自为, 李新, 车涛, 谭俊磊, 任志国
该数据集包含了2016年1月1日至2016年12月31日黑河水文气象观测网中游大满超级站气象要素梯度观测系统数据。站点位于甘肃省张掖市大满灌区农田内,下垫面是玉米田。观测点的经纬度是100.3722E, 38.8555N,海拔1556m。风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m、15m、20m、30m、40m处,共7层,朝向正北;气压计安装在2m处;翻斗式雨量计安装在塔西侧约8m处,架高2.5m;四分量辐射仪安装在12m处,朝向正南;两个红外温度计安装在12m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处,其中两块(Gs_2、Gs_3)埋设在棵间,一块(Gs_1)埋设在植株下面;平均土壤温度传感器TCAV埋设在地下2cm、4cm处,朝向正南,距离塔体2m处;土壤温度探头埋设在地表0cm和地下2cm、4cm、10cm、20cm、40cm、80cm、120cm和160cm处,在距离气象塔2m的正南方;土壤水分传感器分别埋设在地下2cm、4cm、10cm、20cm、40cm、80cm、120cm和160cm处,在距离气象塔2m的正南方;光合有效辐射仪安装在12m处,探头朝向是垂直向上;另有四个光合有效辐射仪分别架设在冠层上方和冠层内,冠层上方安装在12m(探头垂直向上和向下方向各一个)、冠层内安装在0.3m(探头垂直向上和向下方向各一个)高处,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m、WS_15m、WS_20m、WS_30m、WS_40m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m、WD_15m、WD_20m、WD_30m、WD_40m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m、Ta_15m、Ta_20m、Ta_30m、Ta_40m和RH_3m、RH_5m、RH_10m、RH_15m、RH_20m、RH_30m、RH_40m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、平均土壤温度(TCAV)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(单位:百分比)、土壤温度(Ts_0cm、Ts_2cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(单位:摄氏度) 、光合有效辐射(PAR)(单位:微摩尔/平方米秒)、冠层上向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒)和冠层下向上与向下光合有效辐射(PAR_D_up、PAR_D_down)(单位:微摩尔/平方米秒)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示; 2016.10.10-10.25日土壤部分的传感器进行调整,数据不能使用;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2016-6-10 10:30;(6)命名规则为:AWS+站点名称。 水文气象网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 李新, 车涛, 徐自为, 任志国, 谭俊磊
该数据集包含了2015年5月20日至2016年3月11日的黑河中游径流加密观测中4号点的河流水位观测数据。仪器维修重新与2015年5月20日安装调试完毕。观测点位于甘肃省张掖市靖安乡上堡村黑河桥,河床为砂砾石,断面不稳定。观测点的经纬度是N39.065°,E100.433056°,海拔1431米,河道宽度58米。2012年水位观测采用HOBO压力式水位计,采集频率30分钟;2013年起采用采用SR50超声测距仪,采集频率30分钟。2014年6月25日仪器损毁,重新购置。2015年5月20日重新开始记录。数据包括以下部分: 水位观测,观测频率30分钟,单位(cm); 水文气象网或站点信息请参考Li et al. (2013), 观测数据处理请参考He et al.(2016)。
何晓波, 刘绍民, 李新, 徐自为
该数据集包含了2016年1月1日至2016年12月31日黑河水文气象观测网上游大沙龙站气象要素观测数据。站点位于青海省祁连县西侧沙龙滩地区,下垫面是沼泽草甸。观测点的经纬度是98.9406E, 38.8399N,海拔3739m。空气温度、相对湿度传感器架设在5m处,朝向正北;气压计安装在地面上的防撬箱内;翻斗式雨量计安装在10m处;风速与风向传感器架设在10m,朝向正北;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤温度探头埋设在地表0cm和地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处,在距离气象塔2m的正南方;土壤水分探头埋设在地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处,在距离气象塔2m的正南方;土壤热流板(3块)依次埋设在地下6cm处,并距离气象塔2m的正南方。 观测项目有:空气温湿度(Ta_5m、RH_5m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、风速(WS_10m)(单位:米/秒)、风向(WD_10m)(单位:度)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤温度(Ts_0cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(单位:摄氏度)、土壤水分(Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(单位:体积含水量,百分比)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2016-9-10 10:30;(6)命名规则为:AWS+站点名称。 水文气象网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
李新, 车涛, 徐自为, 张阳, 谭俊磊
该数据集包含了2016年1月1日至2016年12月31日黑河水文气象观测网下游荒漠站气象要素观测数据,站点位于内蒙古额济纳旗荒漠滩,下垫面是荒漠。观测点的经纬度是100.9872E, 42.1135N,海拔1054m。空气温度、相对湿度传感器架设在5m、10m处,朝向正北;气压计安装在2m处;翻斗式雨量计安装在10m处;风速传感器架设在5m、10m,风向传感器架设在10m,朝向正北;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤温度探头埋设在地表0cm和地下2cm、4cm、10cm、20cm、40cm、60cm和100cm处,在距离气象塔2m的正南方;土壤水分传感器分别埋设在地下2cm、4cm、10cm、20cm、40cm、60cm和100cm处,在距离气象塔2m的正南方;土壤热流板(3块)依次埋设在地下6cm处。 观测项目有:空气温湿度(Ta_5m、RH_5m、Ta_10m、RH_10m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、风速(WS_5m、WS_10m)(单位:米/秒)、风向(WD_10m)(单位:度)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_60cm、Ms_100cm)(单位:体积含水量,百分比)和土壤温度(Ts_0cm、Ts_2cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_60cm、Ts_100cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2016-6-10 10:30;(6)命名规则为:AWS+站点名称。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考Liu et al. (2011)。
刘绍民, 李新, 车涛, 徐自为, 任志国, 谭俊磊
该数据集包含了2015年1月1日至2016年3月11日的黑河中游径流加密观测中7号点的河流水位和流速观测数据。2014年底传感器出现异常,维修后3月25日调试正常。观测点位于甘肃省张掖市临泽县平川乡黑河桥,河床为砂砾石,断面不稳定。观测点的经纬度是N39.331667°,E 100.099722°,海拔1375米,河道宽度130米。2015年水位观测采用SR50超声波测距仪,采集频率30分钟。数据说明包括: 水位观测,观测频率30分钟,单位(cm);缺值数据统一采用字符串-6999表示。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考He et al.(2016)。
刘绍民, 李新, 徐自为
根据分水方案优化的原则及黑河流域经济社会和生态发展状态,提出以下三种分水方案优化方案。方案1各来水年中游耗水均为6.3亿m3,方案2在90%和75%来水年分别增大中游耗水1.8亿m3和0.6亿m3,方案3在大于90%来水年,莺落峡来水大于19亿m3时,超过19亿m3的水量按照中游分配40%、下游分配60%。同时,为了保持莺落峡多年平均来水15.8亿m3,正义峡下泄9.5亿m3,莺落峡来水小于12.9亿m3时,小于12.9亿m3的水量按照中游分配60%、下游分配40%。
蒋晓辉
该数据集包含了2016年1月1日至2016年12月31日黑河水文气象观测网中游张掖湿地站气象要素观测数据。站点位于甘肃省张掖市国家湿地公园,下垫面是芦苇湿地。观测点的经纬度是100.4464E, 38.9751N,海拔1460m。空气温度、相对湿度传感器架设在5m、10m处,朝向正北;气压计安装在2m处;翻斗式雨量计安装在10m处;风速传感器架设在5m、10m处,风向传感器架设在10m处,朝向正北;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤温度探头埋设在地表0cm和地下2cm、4cm、10cm、20cm、40cm处,在距离气象塔2m的正南方;土壤热流板(3块)依次埋设在地下6cm处;四个光合有效辐射仪分别架设在冠层上方和冠层内,冠层上方安装在6m(探头垂直向上和向下方向各一个)、冠层内安装在0.25m(探头垂直向上和向下方向各一个)高处,朝向正南。 观测项目有:空气温湿度(Ta_5m、RH_5m、Ta_10m、RH_10m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、风速(WS_5m、WS_10m)(单位:米/秒)、风向(WD_10m)(单位:度)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤温度(Ts_0cm、Ts_2cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm)(单位:摄氏度)、冠层上向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒)和冠层下向上与向下光合有效辐射(PAR_D_up、PAR_D_down)(单位:微摩尔/平方米秒)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2016-6-10 10:30;(6)命名规则为:AWS+站点名称。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考Liu et al. (2011)。
刘绍民, 李新, 车涛, 徐自为, 任志国, 谭俊磊
该数据集包含了2016年1月1日至2016年12月31日黑河文气象观测网上游垭口站气象要素观测数据。站点位于青海省祁连县大冬树垭口,下垫面是高寒草甸。观测点的经纬度是100.2421E, 38.0142N,海拔4148m。发布的数据包括两个观测点,均在垭口观测站,相距10m左右,具体包括:空气温度、相对湿度传感器架设在5m处,朝向正北(两组观测,分别10min和30min输出);气压计安装在地面上的防撬箱内(两组观测,分别10min和30min输出);翻斗式雨量计安装在10m处;风速与风向传感器架设在10m,朝向正北(两组,分别10min和30min输出);四分量辐射仪包含两个观测点,其中一个安装在气象塔6m处,朝向正南(10min输出),另一个安装在离地1.5m高的支架上(30min输出);两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤温度探头埋设在地表0cm和地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处(两组观测,分别10min和30min输出);土壤水分探头埋设在地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处(两组观测,分别10min和30min输出);土壤热流板埋设在地下6cm处(两组观测,分别10min(3块热流板)和30min(2块热流板)输出)。 观测项目有:空气温湿度(Ta_5m、RH_5m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、风速(WS_10m)(单位:米/秒)、风向(WD_10m)(单位:度)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤温度(Ts_0cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(单位:摄氏度)、土壤水分(Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(单位:体积含水量,百分比)。 观测数据的处理与质量控制:(1)确保每天144或48个数据(每10min或30min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2016-9-10 10:30;(6)命名规则为:AWS+站点名称。 水文气象网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 李新, 车涛, 徐自为, 张阳, 谭俊磊
该数据集包含了2016年1月1日至2016年12月31日的黑河水文气象观测网中游花寨子荒漠站的涡动相关仪观测数据。站点位于甘肃省张掖市,下垫面是荒漠。观测点的经纬度是100.3201E, 38.7659N,海拔1731.00m。涡动相关仪的架高4.5m,采样频率是10Hz,超声朝向是正北向,超声风速温度仪(CSAT3)与CO2/H2O分析仪(Li7500A)之间的距离是15cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据;(4)剔除夜间弱湍流的观测数据(u*小于0.1m/s)。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。因仪器漂移等原因引起的可疑数据用红色字体标识。4月24日至4月25日由于涡动相关仪Li7500A进行标定,数据缺失。涡动相关仪10Hz数据缺失时,数据由采集器采集的数据进行填补。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为三级(质量标识0:(Δst <30, ITC<30); 1: (Δst <100, ITC<100); 其余为2)。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考Liu et al. (2011)。
刘绍民, 李新, 车涛, 徐自为, 任志国, 谭俊磊
该数据集包含了2016年1月1日至2016年12月31日黑河水文气象观测网下游四道桥超级站气象要素梯度观测系统数据。站点位于内蒙古额济纳旗达来呼布镇四道桥,下垫面是柽柳。观测点的经纬度是101.1374E, 42.0012N,海拔873m。空气温度、相对湿度、风速传感器分别架设在5m、7m、10m、15m、20m、28m处,共6层,朝向正北;风向传感器架设在15m处,朝向正北;气压计安装在防水箱内;翻斗式雨量计安装在28m处;四分量辐射仪安装在10m处,朝向正南;两个红外温度计安装在10m处,朝向正南,探头朝向是垂直向下;两个光合有效辐射仪安装在10m处,朝向正南,探头垂直向上和向下方向各一个;土壤部分传感器安装在塔体南侧2m处,其中土壤热流板(自校正式)(3块)依次埋设在地下6cm处;平均土壤温度传感器TCAV埋设在地下2cm、4cm处;土壤温度探头埋设在地表0cm和地下2cm、4cm、10cm、20cm、40cm、80cm、120cm和160cm处(4月22日增加200cm土壤温度观测);土壤水分传感器分别埋设在地下2cm、4cm、10cm、20cm、40cm、80cm、120cm和160cm处(4月22日增加200cm土壤水分观测)。 观测项目有:风速(WS_5m、WS_7m、WS_10m、WS_15m、WS_20m、WS_28m)(单位:米/秒)、风向(WD_15m)(单位:度)、空气温湿度(Ta_5m、Ta_7m、Ta_10m、Ta_15m、Ta_20m、Ta_28m和RH_5m、RH_7m、RH_10m、RH_15m、RH_20m、RH_28m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、向上和向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒)、平均土壤温度(TCAV)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm、Ms_200cm)(单位:体积含水量,百分比)、土壤温度(Ts_0cm、Ts_2cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm、Ts_200cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;4cm土壤温度在2016.05.21-06.17之间由于传感器的问题,数据缺失;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2016-9-10 10:30;(6)命名规则为:AWS+站点名称。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考Liu et al. (2011)。
刘绍民, 李新, 车涛, 徐自为, 任志国, 谭俊磊
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件