The gridded desertification risk data of The Arabian Peninsula in 2021 was calculated based on the environmentally sensitive area index (ESAI) methodology. The ESAI approach incorporates soil, vegetation, climate and management quality and is one of the most widely used approaches for monitoring desertification risk. Based on the ESAI framework, fourteen indicators were chosen to consider four quality domains. Each quality index was calculated from several indicator parameters. The value of each parameter was categorized into several classes, the thresholds of which were determined according to previous studies. Then, sensitivity scores between 1 (lowest sensitivity) and 2 (highest sensitivity) were assigned to each class based on the importance of the class’ role in land sensitivity to desertification and the relationships of each class to the onset of the desertification process or irreversible degradation. A more comprehensive description of how the indicators are related to desertification risk and scores is provided in the studies of Kosmas (Kosmas et al., 2013; Kosmas et al., 1999). The main indicator datasets were acquired from the Harmonized World Soil Database of the Food and Agriculture Organization, Climate Change Initiative (CCI) land cover of the European Space Agency and NOAA’s Advanced Very High Resolution Radiometer (AVHRR) data. The raster datasets of all parameters were resampled to 500m and temporally assembled to the yearly values. Despite the difficulty of validating a composite index, two indirect validations of desertification risk were conducted according to the spatial and temporal comparison of ESAI values, including a quantitative analysis of the relationship between the ESAI and land use change between sparse vegetation and grasslands and a quantitative analysis of the relationship between the ESAI and net primary production (NPP). The verification results indicated that the desertification risk data is reliable in the Arabian Peninsula in 2021.
XU Wenqiang
This data set includes the PM2.5 mass concentration of atmospheric aerosol particles at Southeast Tibet station, Ali station, mostag station, Everest station and Namuco station (unit: mm) μ g/m3)。 Aerosol PM2.5 fine particles refer to particles with aerodynamic equivalent diameter less than or equal to 2.5 microns in the ambient air. It can be suspended in the air for a long time, which has an important impact on air quality and visibility. The higher its concentration in the air, the more serious the air pollution. The concentration characteristic data of PM2.5 is output at the frequency of obtaining a set of data every 5 minutes, which can realize the analysis of aerosol mass concentration at different time scales such as hour, day and night, season and interannual, which provides the analysis of changes and influencing factors of aerosol mass concentration at different locations in the Qinghai Tibet plateau at different time scales, as well as the evaluation of local air quality, It provides important data support. This data is an update of the published data set of PM2.5 concentration of aerosol particles at different stations on the Qinghai Tibet Plateau (2018 and 2019).
WU Guangjian
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn