Grassland actual net primary production (NPPa) was calculated by CASA model. CASA model was calculated with the combination of satellite-observed NDVI and climate (e.g. temperature, precipitation and radiation) as the driving factors, and other factors, such as land-use change and human harvest from plant material, were reflected by the changes of NDVI. CASA NPP was determined by two variables, absorbed photosynthetically active radiation’ (APAR) and the light-use efficiency (LUE). Grassland potential net primary production (NPPp) was calculated by TEM model. TEM is one of process-based ecosystem model, which was driven by spatially referenced information on vegetation type, climate, elevation, soils, and water availability to calculate the monthly carbon and nitrogen fluxes and pool sizes of terrestrial ecosystems. TEM can be only applied in mature and undisturbed ecosystem without take the effects of land use into consideration due to it was used to make equilibrium predications. Grassland potential aboveground biomass (AGBp) was estimated by random forest (RF) algorithm, using 345 AGB observation data in fenced grasslands and their corresponding climate data, soil data, and topographical data.
NIU Ben, ZHANG Xianzhou
1) Data content: the main ecological environment data retrieved from remote sensing in Pan third polar region, including PM2.5 concentration, forest coverage, Evi, land cover, and CO2; 2) data source and processing method: PM2.5 is from the atmospheric composition analysis group web site at Dalhousie University, and the forest coverage data is from MODIS Vegetation continuum Fields (VCF), CO2 data from ODIAC fossil fuel emission dataset, EVI data from MODIS vehicle index products, and land cover data from ESA CCI land cover. 65 pan third pole countries and regions are extracted, and others are not processed; 3) data quality description: the data time series from 2000 to 2015 is good; 4) data application achievements and prospects: it can be used for the analysis of ecological environment change.
LI Guangdong
The dataset is the ground verification point dataset of land cover and vegetation type in the Source Region of the Yangtze River (in the south of Qinghai Province) which collected during August 2018. In the dataset, the homogeneous patches are considered as the main targets of this collection. They are easy to be recognized out and distinguished from other vegetation types. And these samples have high representativeness comparing with other land surface features. In each sample, the geographical references, longitude and latitude (degree, minute, second), time (24h) and elevation (0.1m) are recorded firstly according to GPS positioning. Vegetation types, constructive species, characteristics, land types and features, landmarks, etc. are recorded into the property table manually for checking in laboratory. At last, each sample place has been taken at least 1 photography. In this dataset, 90% or more samples have been taken 2 or more in field landscape photographs for land use type and vegetation classification examination. We have carefully examined the position accuracy of each sample in Google Earth. After 2 rounds of checking and examination, the accuracy and reliability of the property of each sample have been guaranteed.
WANG Xufeng
The dataset is the ground verification point dataset of land cover and vegetation type in the Source Region of Yellow River (in the north of Zaling Lake, Qinghai Province) which collected during August 2018. In the dataset, the homogeneous patches are considered as the main targets of this collection. They are easy to be recognized out and distinguished from other vegetation types. And these samples have high representativeness comparing with other land surface features. In each sample, the geographical references, longitude and latitude (degree, minute, second), time (24h) and elevation (0.1m) are recorded firstly according to GPS positioning. Vegetation types, constructive species, characteristics, land types and features, landmarks, etc. are recorded into the property table manually for checking in laboratory. At last, each sample place has been taken at least 1 photography. In this dataset, 90% or more samples have been taken 2 or more in field landscape photographs for land use type and vegetation classification examination. We have carefully examined the position accuracy of each sample in Google Earth. After 2 rounds of checking and examination, the accuracy and reliability of the property of each sample have been guaranteed.
WANG Xufeng
The dataset is the ground verification point dataset of land cover and vegetation type in the Hoh Xil (in the northwest of Qinghai Province) which collected during August 2018. In the dataset, the homogeneous patches are considered as the main targets of this collection. They are easy to be recognized out and distinguished from other vegetation types. And these samples have high representativeness comparing with other land surface features. In each sample, the geographical references, longitude and latitude (degree, minute, second), time (24h) and elevation (0.1m) are recorded firstly according to GPS positioning. Vegetation types, constructive species, characteristics, land types and features, landmarks, etc. are recorded into the property table manually for checking in laboratory. At last, each sample place has been taken at least 1 photography. In this dataset, 90% or more samples have been taken 2 or more in field landscape photographs for land use type and vegetation classification examination. We have carefully examined the position accuracy of each sample in Google Earth. After 2 rounds of checking and examination, the accuracy and reliability of the property of each sample have been guaranteed.
WANG Xufeng
This data set contains the results of the calculation of Net Primary Productivity (NPP) on the Tibetan Plateau based on ecological models and remote sensing data from 1982 to 2006. Ecosystem NPP of the Tibetan Plateau was generated based on the remote sensing Advanced Very High Resolution Radiometer (AVHRR) data and the Carnegie-Ames-Stanford Approach (CASA) model(1982-2006), the soil carbon content was generated based on the second soil census data, and the biomass carbon data were generated based on the High Resolution Biosphere Model (HRBM) model. Forest ecosystem NPP of the Tibetan Plateau (1982-2006): npp_forest82.e00,npp_forest83.e00,npp_forest84.e00,npp_forest85.e00,npp_forest86.e00, npp_forest87.e00,npp_forest88.e00,npp_forest89.e00,npp_forest90.e00,npp_forest91.e00, npp_forest92.e00,npp_forest93.e00,npp_forest94.e00,npp_forest95.e00,npp_forest96.e00, npp_forest97.e00,npp_forest98.e00,npp_forest99.e00,npp_forest00.e00,npp_forest01.e00, npp_forest02.e00,npp_forest03.e00,npp_forest04.e00,npp_forest05.e00,npp_forest06.e00 Grassland ecosystem NPP of the Tibetan Plateau(1982-2006): npp_grass82.e00,npp_grass83.e00,npp_grass84.e00,npp_grass85.e00,npp_grass86.e00, npp_grass87.e00,npp_grass88.e00,npp_grass89.e00,npp_grass90.e00,npp_grass91.e00, npp_grass92.e00,npp_grass93.e00,npp_grass94.e00,npp_grass95.e00,npp_grass96.e00, npp_grass97.e00,npp_grass98.e00,npp_grass99.e00,npp_grass00.e00,npp_grass01.e00,npp_grass02.e00,npp_grass03.e00,npp_grass04.e00,npp_grass05.e00,npp_grass06.e00. Biomass carbon and soil carbon of the Tibetan Plateau: Biomass.e00,Socd.e00. The soil carbon content data (Socd) are generated based on data of the second soil census of China and Soil Map of China (1:1,000,000) by soil subclass interpolation. The NPP data are generated from the CASA model and AVHRR data simulation: Potter CS, Randerson JT, Field CB et al. Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochemical Cycles, 1993, 7: 811–841. The biomass carbon data are generated via HRBM model simulation: McGuire AD, Sitch S, et al. Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochem. Cycles, 2001, 15 (1), 183-206. The raw data are mainly remote sensing data and field observation data with high accuracy; the verification and adjustment of the measured data in the field during the production were undertaken to maintain the error of the simulation results and the field measured data within the acceptable range as much as possible; the verification results of the NPP data and the field measured data show that the error remains within 15%. The spatial resolution is 0.05°×0.05° (longitude×latitude).
ZHOU Caiping
The data set include crop leaf stomatal conductance observed at four sample regions, that is the soil moisture control experimental field at Daman county, and the super station, and Shiqiao sample plots at Wuxing village in Zhangye city. 1) Objective Crop leaf stomatal conductance, a key biophysical parameter, was observed as model parameter or a priori knowledge for crop growth model, or evapotranspiration estimation. 2) Measuring instruments Leaf porometer. 3) Measuring site a. the soil moisture control experimental field at Daman county, Twelve soil water treatments are set. The crop leaf stomatal conductance for each treatment is measured on 17, 23 and 29 May, and 3, 9, 14 and 24 June, and 5 and 12 July. b. the Super Station The crop leaf stomatal conductance at the super station is measured on 22 and 28 May, 5, 11, 18, and 25 June, and 1, 8, 15, 22 and 31 July, 9, 15 and 22 August, and 3 and 11 September. c. the Shiqiao sample site The crop leaf stomatal conductance at the Shiqiao village is measured on 17, 22 and 28 May, 4, 11, 17 and 25 June, 1, 8, 15, 22, and 30 July, 8, 16 and 27 August, and 9 September. 4) Data processing The observational data was recorded in the sheets and reorganized in the EXCEL sheets. The time used in this dataset is in UTC+8 Time.
Xu Fengying, Wang Jing, Huang Yongsheng, LI Xin, MA Mingguo
1) Initial data of community characteristics and main plant biological characteristics of the grass-animal equilibrium stage of the test grassland in 1983; 2) Livestock management data of 4-5 grazing grasslands; 3) Observation data of diversity, productivity and functional group of different grazing grassland communities; 4) Observation data on the height, coverage, biomass, and flower morphology, tillering, and leaf characteristics of main plants in different grazing gradient grasslands 5) Observation data of soil nutrients and litter in different grazing grasslands.
ZHAO Chengzhang
Correlation data of vegetation functional traits with topographic factors and pastoral animal husbandry activity factors, including: 1) observation data of main functional traits of 2-3 kinds of grassland plants in elevation, slope and slope upward; 2) correlation analysis data of vegetation functional traits and topographic factors; 3) correlation analysis data between vegetation functional traits and livestock activity intensity factors.
ZHAO Chengzhang
This data set is collected according to the output results of tesim ecological process model, including biomass, plant N and P content, evapotranspiration, NPP and other model output results. Some of the results are obtained by field measurement, some by laboratory analysis of field samples, some by literature.
PENG Hongchun
China 1:100000 data of land use is a major application in the Chinese Academy of Sciences "five-year" project "the national resources and environment remote sensing macroscopic investigation and study of dynamic organized 19 Chinese Academy of Sciences institute of remote sensing science and technology team, by means of satellite remote sensing, in three years based on Landsat MSS, TM and ETM remote sensing data established China 1:100000 images and vector of land use database.The main contents include: China 1:100,000 land use data;China 1:100,000 land use graph data and attribute data. The data was directly clipped from China's 1:100,000 land-use data.A hierarchical land cover classification system was adopted for the land use data of heihe basin of 1:100,000, and the whole basin was divided into 6 primary categories (arable land, forest land, grassland, water area, urban and rural areas, industrial and mining areas, residential land and unused land) and 26 secondary categories.The data type is vector polygon, which is stored in Shape format.There are two types of data projection: WGS84/ALBERS;Data coverage covers the new heihe watershed boundary (lack of outer Mongolia data). Land use classification attributes: The first class type and the second class type attributes encode the spatial distribution position Cultivated paddy field 113 is mainly distributed in alluvial plain, basin and valley Cultivated paddy field 112 distributed in hilly valley narrow valley platform or beach (with irrigation conditions) Cultivated paddy field 111 is mainly distributed in mountain valley narrow valley platform or beach (with better irrigation conditions) Arable land 124 is mainly distributed in mountainous areas, the slope is generally more than 25 degrees (belongs to the steep slope hanging land), should be returned to forest. Cultivated dry land 123 is mainly distributed in basins, piedmont belts, river alluvial, diluvial or lacustrine plains (water shortage and poor irrigation conditions). Cultivated dry land 122 is mainly distributed in hilly areas (shaanxi, gan, ning, qing).In general, the plot is distributed on gentle slopes and x and sockets of hills. Arable land 121 is mainly distributed in the mountainous area, with an elevation of 4000 meters below the slope (gentle slope, mountainside, steep slope platform, etc.) and mountain front belt. Woodlands have woodlands (trees) 21 mainly distributed in the mountains (below 4000 meters above sea level) or in the slope, valley two slopes, mountain tops, plains.In qinghai nanshan, qilian mountains are. Woodland shrub 22 is mainly distributed in the higher mountain areas (below 4500 m), most of the distribution of hillside and valley and sand. Forest dredging 23 mainly distributed in the mountains, hills, plains and sandy land, gobi (soil, gravel) edge. Other woodlands 24 are mainly distributed in the oasis ridge, river, roadside and rural residential areas around. Grassland 31 is generally distributed in mountainous areas (gentle slopes), hills (steep slopes) and interriver beaches, gobi desert, sandy hills, etc. The covered grassland 32 is mainly distributed in dry places (next door low-lying land and sandy hills, etc.). Grassland low cover grassland 33 mainly grows in drier places (loess hills and sandy edges). The river channel 41 is mainly distributed in the plain, the cultivated land between the rivers and the valleys in the mountains. Water lakes are mainly distributed in low-lying areas. The reservoirs are mainly distributed in the intermountain lowlands and intersandy hills in qinghai province. Water area glaciers and permanent snow 44 mainly distributed in the plain, the valley between the river, there are surrounding residents and arable land. Waters and beaches are mainly distributed on the top of (over 4000) mountains.
WANG Jianhua, LIU Jiyuan
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn