The dataset of ground truth measurement synchronizing with Envisat ASAR was obtained in the arid region hydrological experimental area on Sep. 19, 2007 during the pre-observation period. One scene of Envisat ASAR image was captured on Sep. 19. The data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:29 BJT. Those provide reliable ground data for remote sensing retrieval and validation of soil moisture from Envisat ASAR image. Observation items included: (1) soil moisture measured by the cutting ring method in Linze reed land, Zhangye farmland, Zhangye gobi, Linze maize land, Linze alfalfa land, Zhangye weather station, and Linze wetland. (2) GPS measured by GARMIN GPS 76 (3) vegetation measurements including the vegetation height, the green weight, the dry weight, the sampling method, and descriptions on the land type, uniformity and dry and wet conditions (4) atmospheric parameters at Daman Water Management office measured by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 and can be opened by ASTPWin. ReadMetext files (.txt) is attached for detail. Processed data (after retrieval of the raw data) archived as Excel files are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (5) roughness measured by the roughness plate together with the digital camera. The coordinates of the sample would be got with the help of ArcView; and after geometric correction, surface height standard deviation (cm) and correlation length (cm) could be acquired based on the formula listed on pages 234-236, Microwave Remote Sensing (Vol. II). The roughness data were initialized by the sample name, which was followed by the serial number, the name of the file, standard deviation and correlation length. Each text files (.txt) file is matched with one sample photo and standard deviation and correlation length represent the roughness. In addition, the length of 101 radius is also included for further checking.
2019-09-13
The dataset of LAS (Large Aperture Scintillometer, made in Holland) observations was obtained in the Linze grassland station, Linze county (Gansu province), from May 19 to Aug. 31, 2008. The instrument was composed of the transmitter (100°04′10.4″E, 39°15′02.8″N, 9.25m), the receiver (100°03′36.8″E, 39°15′02.8″N, 9.1m) and the data acquisition system. The transmitter and the receiver were 1550m away from each other and the operating altitude was 9.2m. The observation item was natural logarithm of structural parameters of the refractive index (UCn2). The transmitting frequency was 0.5HZ. The data were named after WATER_LAS_Linze_yyyymmdd-yyyymmdd.csv (yyyymmdd-yyyymmdd for observation time). The missing data were marked "None". For more detailed information, please refer to Directions on LAS (Large Aperture Scintillometer) observations.
2019-09-13
The dataset of ground truth measurements synchronizing with Landsat TM was obtained in the Linze grassland and Linze station foci experimental area on Sep. 23, 2007 during the pre-observation periods, and one scene was captured well. These data can provide reliable ground data for retrieval and validation of land surface temperatures with EO-1 Hyperion remote sensing approaches. Observation items included: (1) the land surface radiative temperature by the hand-held infrared thermometer, which was calibrated; (2) GPS by GARMIN GPS 76; (3) atmospheric parameters at Daman Water Management office measured by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. These data include the raw data in .k7 format and can be opened by ASTPWin software. ReadMe.txt is attached for detail. Processed data (after retrieval of the raw data) in Excel contain optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (4) ground-based land surface temperature measurements by the thermal imager in the Heihe gobi, west of Zhangye city.
2019-09-12
BJ-1 dataset includes 11 scenes, covering the upper and middle reaches of the Heihe river basin, which were acquired on 10-21-2007, 11-19-2007, 01-09-2008, 03-03-2008, 04-04-2008, 04-16-2008, 05-01-2008, 05-16-2008, 07-01-2008, 07-06-2008 and 07-08-2008. The sensor was MSI, substar resolution was 32m, fov was 22.06°, the orbit was 686km high and the dip angle was 98.1725°, the focal distance was 150mm, CCD pixel was 7μm, the near infrared band was 760nm-900nm, red wave band was 630nm-690nm and green wave band was 520nm-620nm. The data version is Level 2, which was released after geometric correction. BJ-1 dataset was acquired from "Dragon Programme" (grant number: 5322).
2019-09-12
This dataset was acquired on May 25, 2008 by the L&K-band airborne microwave radiometer at the Linze-Biandukou flight area.The L-band frequency is 1.4 GHz, the rear view is 35 degrees, and the dual-polarization (H and V) information is obtained; the K-band frequency is 18.7 GHz, with zenith angle observation, and there is no polarization information. The plane took off from Zhangye Airport at 9:51 (Beijing time, the same below) and landed at 15:01. The observation from 10:10 to 12:30 was in the Linze area, the flight altitude is about 1800m, and the flight speed is about 250km/hr. The plane flew low over Linze Reservoir from 12:31 to 12:38. The plane works in the Bianduko aerophotography region from13:13 to 14:35, the flight altitude is about 3000m, and the flight speed is about 250km/hr. The original data is divided into two parts: microwave radiometer data and GPS data. The L and K bands of microwave radiometer are all from non-imaging observation, the digital values obtained from instantaneous observation are recorded by text files, the longitude and latitude of flight and the attitude parameters of aircraft are recorded by GPS data. At the same time, through the respective clock records of the microwave radiometer and GPS, the microwave observation can be linked with the GPS record, and the microwave observation can be matched with the geographical coordinate information. Due to the relatively low resolution of the microwave radiometer, the leeway, welter and pitching of the aircraft are generally neglected in data processing. According to the target of use and relative flight altitude (H), after calibration and coordinate matching, the observation information can be rasterized. The resolution (x) of the L and K bands can be considered consistent with the observation footprint. The reference resolution is: L band, x = 0.3H; K band, x = 0.24H. After the above steps, products that can be directly used by users can be obtained.
2019-07-20
The dataset of eddy covariance observations was obtained at the Yingke Oasis station from 27 Dec. 2007 to 31 Dec. 2009. The observation site is located in an irrigation farmland in Yingke (E100°24′37.2″/N38°51′25.7″, 1519.1m), Zhangye city, Gansu province. The experimental area, situated in the middle stream Heihe river basin and with windbreaks space of 500m from east to west and 300m from south to north, is an ideal choice for its flat and open terrain. The original observation items included the latitudinal wind speed Ux (m/s), the latitudinal wind speed Uy (m/s), the longitudinal wind speed Uz (m/s), the ultrasonic temperature Ts (°C), co2 consistency (mg/m^3), h2o consistency (g/m^3), air pressure (KPa) and the abnormal ultrasonic signal (diag_csat). The instrument mount was 2.81m, the ultrasound direction was at an azimuth angle of 0°, the distance between Li7500 and CSAT3 was 30cm and the sampling frequency was 10HZ/s. The dataset was distributed at three levels: Level0 were the raw data acquired by instruments; Level1, including the sensible heat flux (Hs), the latent heat flux (LE_wpl), and co2 flux (Fc_wpl), were real-time eddy covariance output data and stored in .csv month by month; Level2 were processed data in a 30-minute cycle after outliers elimination, coordinates rotation, frequency response correction, WPL correction and initial quality control. The data files were named as follows: station name +data level+data acquisition date. As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide and Eddy Covariance Observation Manual.
2019-05-23
The dataset of GPS radiosonde observations was obtained at an interval of 2 seconds in the cold region hydrology experimental area in March, 2008 and the arid region hydrology experimental area from May to July, 2008. The items were the air temperature, relative humidity, air pressure, the dew temperature, the water vapor mixing ratio, latitudinal and longitudinal wind speeds, the wind speed and direction. Simultaneous with the satellite/airplane overpass, GPS radiosonde observations were carried out: Binggou watershed on Mar. 14, A'rou on Mar. 15, Binggou watershed on Mar. 15, Biandukou on Mar. 17, Binggou watershed on Mar. 22, Binggou watershed on Mar. 29, and A'rou on Apr. 1 for the upper stream experiments; Linze grassland station on May 30, Yingke oasis on Jun.1, Huazhaizi desert station on Jun. 4, Linze grassland station on Jun. 5, Linze grassland station on Jun. 6, Huazhaizi desert station on Jun. 16, Yingke oasis on Jun. 29, Binggou watershed on Jul. 5, Yingke oasis on Jul. 7, Linze grassland station on Jul. 11, and Yingke oasis at 0, 4:10, 8:09, and 12:09 on Jul. 14 for middle stream experiments.
2019-05-23
The dataset of surface roughness measurements by phototaking was obtained in the Huazhaizi desert steppe foci experimental area. Observation items included: (1) Surface roughness synchronizing with ASAR and MODIS in Huazhaizi desert No. 2 plot on May 24, 2008. (2) Surface roughness synchronizing with WiDAS in Huazhaizi desert No. 1 plot on May 30, 2008. The self-made roughness reference board (Cold and Arid Regions Environmental and Engineering Research Institute, CAS), the digital camera and the compass were used. Sample points were selected at equal intervals along the diagonals and marked in the photos.
2019-05-23
The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in the Linze station foci experimental area from Sep. 12 to Sep. 15, 2007 during the pre-observation period. One scene of Envisat ASAR image was captured on Sep. 19. The data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:29 BJT. Observation items included: (1) GPS by GARMIN GPS 76 (2) LAI by LAI-2000 (3) photosynthesis measured by LI6400 from Linze station carried out according to WATER specifications. Raw data were archived in the user-defined format , which can be opened by notepat and processed by Excel. (4) object spectrum of typical ground objects measured by ASD FieldSpec Spectroradiometer (350~2 500 nm) from Gansu Meteorological Administration. The reference whiteboard was attached therein. Raw spectral data were archived as binary files, which were recorded daily in detail, and pre-processed data on reflectance were archived as text files (.txt). (5) infrared temperature measured by the handheld infrared thermometer from Cold and Arid Regions Environmental and Engineering Research Institute, which was calibrated. The infrared temperature of the crown, the vertical canopy, 45 degrees frontlight and backlight were measured respectively. The data were archived as Excel files. (6) soil profile (0-10cm, 10-20cm, 20-40cm and 40-60cm), and soil moisture measured by the cutting ring method. Profile photos were taken meanwhile. (7) quadrate (1m×1m) investigations, including the quadrate number, species, quantities, coverage, the total quadrate coverage, the mean height, biomass number, the total green weight and the total dry weight. (8) repeated measurements on chlorophyll content of different species measured by SPAD 502. (9) photos taken by Nikon D80 with a lens of Sigma 8mm F3.5 EX DG CIRCULAR FISHEYE, shooting straight downwards at the height of 1.5m (10) atmospheric parameters at Daman Water Management office measured by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 and can be opened by ASTPWin. ReadMetext files (.txt) is attached for detail. Processed data (after retrieval of the raw data) in Excel are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number.
2019-05-23
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn