Current Browsing: Geographic Sciences


HiWATER: Dataset of hydrometeorological observation network (No.6 runoff observation system of Gaoya hydrological station, 2014)

The data set includes the observation data of river water level and velocity at No. 6 point in the dense observation of runoff in the middle reaches of Heihe River from January 1, 2014 to December 31, 2014. The observation point is located in Gaoya National Hydrological Station, zhaojiatunzhuang, Ganzhou District, Zhangye City, Gansu Province. The riverbed is sandy gravel with stable section. The longitude and latitude of the observation point are n39 ° 08'06.35 ", E100 ° 25'58.23", 1420 m above sea level, and 50 m wide river channel. Hobo pressure water level gauge is used for water level observation, with acquisition frequency of 60 minutes. Data description includes the following two parts: Water level observation, 60 minutes in unit (cm) in 2014; Data covers the period of January 1, 2014 solstice December 31, 2014; Flow observation, unit (m3); According to the monitoring flow of different water levels, the flow curve of water levels was obtained, and the change process of runoff was obtained by observing the process of water levels.The missing data are uniformly represented by the string -6999. For information of hydrometeorological network or station, please refer to Li et al.(2013), and for observation data processing, please refer to He et al.(2016).

2022-09-20

Drone orthophoto image and DSM of Qumalai wetland plot (2018)

On August 19, 2018, DJI UAV was used to aerial photograph the wetland sample in Qumalai County of the Yangtze River Source Park. The overlap degree of adjacent photographs was not less than 70% according to the set flight route. The Orthophoto Image and DSM were generated using the photographs taken. The Orthophoto Image included three bands of red, green and blue, with a ground resolution of 2 cm, an area of 850 m x 1000 m and a resolution of 4.5 cm for DSM.

2021-11-02

Rare animals survey dataset for the Three-River Headwater Region (2016-2017)

The data set contains the rare animal survey data for the Sanjiangyuan area from 2016 to 2017, including the latitude and longitude of the survey site, the length of the sample line, animal discovery time, animal names, quantity, location of the occurrence, type of habitat, affiliated families, etc.

2021-04-18

HiWATER: The multi-scale observation experiment on evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)-dataset of flux observation matrix(Zhangye gobi desert station)

This dataset contains the automatic weather station (AWS) measurements from Bajitan Gobi station in the flux observation matrix from 13 May to 21 September, 2012. The site (100.30420° E, 38.91496° N) was located in a Gobi surface, which is near Zhangye city, Gansu Province. The elevation is 1562 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (HMP45AC; 5 m and 10 m, towards north), air pressure (PTB110; 2 m), rain gauge (TE525M; 10 m), wind speed (03001; 5 m and 10 m, towards north), wind direction (03001; 10 m, towards north), a four-component radiometer (CNR1; 6 m, towards south), two infrared temperature sensors (IRTC3; 6 m, vertically downward), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), soil moisture profile (ECh2o-5; -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), and soil heat flux (HFT3; 3 duplicates, 0.06 m). The observations included the following: air temperature and humidity (Ta_5 m and Ta_10 m, RH_5 m and RH_10 m) (℃ and %, respectively), air pressure (press, hpa), precipitation (rain, mm), wind speed (Ws_5 m and Ws_10 m, m/s), wind direction (WD_10 m, °), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m^2), infrared temperature (IRT_1 and IR_2, ℃), soil heat flux (Gs_1, Gs_2 and Gs_3, W/m^2), soil temperature profile (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, and Ts_100 cm, ℃), and soil moisture profile (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, and Ms_100 cm, %). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

2021-01-26

HiWATER: The multi-scale observation experiment on evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)-dataset of flux observation matrix (Daman superstation)

This dataset contains the flux observation matrix measurements obtained from the automatic weather station (AWS) at the Daman superstation between 10 May and 26 September, 2012. The site (100.37223° E, 38.85551° N) was located in a cropland (maize surface) in the Daman irrigation, which is near Zhangye, Gansu Province. The elevation is 1556.06 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (AV-14TH; 3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (windsonic; 3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 2.5 m), four-component radiometer (PSP&PIR; 12 m, towards south), two infrared temperature sensors (IRTC3; 12 m, vertically downward), photosynthetically active radiation (LI-190SB; 12 m, towards south), a TCAV averaging soil thermocouple probe (TCAV; -0.02, -0.04 m), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (CS616; -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and soil heat flux (HFP01SC; 3 duplicates with one below the vegetation; and the other between plants, -0.06 m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m, m/s), wind direction (WD_3 m, WD_5 m, WD_10 m, WD_15 m, WD_20 m, WD_30 m, and WD_40 m, °), air pressure (press, hpa), precipitation (rain, mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m^2), infrared temperature (IRT_1 and IR_2, ℃), photosynthetically active radiation (PAR, μmol/ (s m^-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2, and Gs_3, W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm, ℃), and soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm, %). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

2021-01-26

Oxygen content in the atmosphere of the Tibetan Plateau

Based on the meteorological data of 105 meteorological stations in and around the Qinghai Tibet Plateau from 1980 to 2019, the National Meteorological Science Data Center of China Meteorological Administration (CMA) was established. By calculating the oxygen content, it is found that there is a significant linear correlation between oxygen content and altitude, y = - 0.0263x + 283.8, R2 = 0.9819. Therefore, the oxygen content distribution map can be calculated based on DEM data grid. Due to the limitation of the natural environment in the Qinghai Tibet Plateau, there are few related fixed-point observation institutions. This data can reflect the distribution of oxygen content in the Qinghai Tibet Plateau to a certain extent, and has certain reference significance for the research of human living environment in the Qinghai Tibet Plateau.

2021-01-25

HiWATER: Dataset of hydrometeorological observation network (an observation system of meteorological elements gradient of A’rou Superstation, 2017)

The data set contains data from January 1, 2017 to December 31, 2017 from the meteorological element gradient observation system of alu superstation, upstream of the heihe hydrometeorological observation network.The station is located in caoban village, aru township, qilian county, qinghai province.The longitude and latitude of the observation point are 100.4643e, 38.0473n and 3033m above sea level.The air temperature, relative humidity and wind speed sensors are located at 1m, 2m, 5m, 10m, 15m and 25m respectively, with a total of six layers facing due north.The wind direction sensor is located at 10m, facing due north;The barometer is installed at 2m;The tilting rain gauge is installed on the 28m observation tower of super aru station;The four-component radiometer is installed at 5m, facing due south;Two infrared thermometers are installed at 5m, facing due south, and the probe facing vertically downward.The photosynthetic effective radiometer is installed at 5m, facing due south, and the probe facing vertically upward.Part of the soil sensor is buried at 2m in the south direction of the tower body, and the soil heat flow plate (self-correcting formal) (3 pieces) are all buried at 6cm underground.The mean soil temperature sensor TCAV is buried 2cm and 4cm underground.The soil temperature probe is buried at the surface of 0cm and underground of 2cm, 4cm, 6cm, 10cm, 15cm, 20cm, 30cm, 40cm, 60cm, 80cm, 120cm, 160cm, 200cm, 240cm, 280cm and 320cm, among which the 4cm and 10cm layers have three repeats.The soil water sensor is buried underground 2cm, 4cm, 6cm, 10cm, 15cm, 20cm, 30cm, 40cm, 60cm, 80cm, 120cm, 160cm, 200cm, 240cm, 280cm and 320cm respectively, among which the 4cm and 10cm layers have three duplexes. The observations included the following: air temperature and humidity (Ta_1 m, Ta_2 m, Ta_5 m, Ta_10 m, Ta_15 m and Ta_25 m; RH_1 m, RH_2 m, RH_5 m, RH_10 m, RH_15 m and RH_25 m) (℃ and %, respectively), wind speed (Ws_1 m, Ws_2 m, Ws_5 m, Ws_10 m, Ws_15 m and Ws_25 m) (m/s), wind direction (WD_2 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/(s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm_1, Ts_4 cm_2, Ts_4 cm_3, Ts_6 cm, Ts_10 cm_1, Ts_10 cm_2, Ts_10 cm_3, Ts_15 cm, Ts_20 cm, Ts_30 cm, Ts_40 cm, Ts_60 cm, Ts_80 cm, Ts_120 cm, Ts_160 cm, Ts_200 cm, Ts_240 cm, Ts_280 cm and Ts_320 cm) (℃), and soil moisture (Ms_2 cm, Ms_4 cm_1, Ms_4 cm_2, Ms_4 cm_3, Ms_6 cm, Ms_10 cm_1, Ms_10 cm_2, Ms_10 cm_3, Ms_15 cm, Ms_20 cm, Ms_30 cm, Ms_40 cm, Ms_60 cm, Ms_80 cm, Ms_120 cm, Ms_160 cm, Ms_200 cm, Ms_240 cm, Ms_280 cm and Ms_320 cm) (%, volumetric water content). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;The soil heat flux G1 was between 2017.1.1-2.28 and 2017.8.8-8.23, while the soil heat flux G3 was between 4.16-7.6. Due to sensor problems, data was missing.(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: 2017-6-10:10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).

2020-08-17

HiWATER: Dataset of hydrometeorological observation network (large aperture scintillometer of Daman Superstation, 2016)

The data set contains the flux observation data of large aperture scintillator from daman station in the middle reaches of heihe hydrometeorological observation network.Large aperture scintillators of BLS450 and BLS900 models were installed at daman station in the middle reaches of China. The north tower was the receiving end of BLS900 and the transmitting end of BLS450, and the south tower was the transmitting end and the receiving end of BLS900.The observation time is from January 1, 2016 to December 31, 2016.The station is located in dazman irrigation district, zhangye city, gansu province.The latitude and longitude of the north tower is 100.3785 E, 38.8607 N, and the latitude and longitude of the south tower is 100.3685 E, 38.8468 N, with an altitude of about 1556m.The effective height of the large aperture scintillator is 22.45m, the optical diameter length is 1854m, and the sampling frequency is 1min. Large aperture flicker meter raw observation data for 1 min, data released for after processing and quality control of data, including sensible heat flux is mainly combined with the automatic meteorological station observation data, based on similarity theory alonzo mourning - Mr. Hoff is obtained by iterative calculation, the quality control of the main steps include: (1) excluding Cn2 reach saturation data (Cn2 e-13 > 1.43);(2) data with weak demodulation signal strength (Average X Intensity<1000) were eliminated;(3) data at the time of precipitation were excluded;(4) data of weak turbulence under stable conditions were excluded (u* < 0.1m/s).In the iterative calculation process, the stability universal function of Thiermann and Grassl(1992) was selected. Please refer to Liu et al(2011, 2013) for detailed introduction. Some notes on the released data :(1) the middle LAS data is mainly BLS900, the missing time is supplemented by BLS450 observation, and the missing time of both is marked with -6999.(2) data table head: Date/Time: Date/Time (format: yyyy/m/d h:mm), Cn2: structural parameters of air refraction index (unit: m-2/3), H_LAS: sensible heat flux (unit: W/m2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.

2020-08-17

HiWATER: The multi-scale Observation experiment on evapotranspiration over heterogeneous land surfaces (MUSOEXE-12)-Dataset of flux observation matrix (No.16 eddy covariance system) (2012)

This dataset contains the flux measurements from site No.16 eddy covariance system (EC) in the flux observation matrix from 6 June to 17 September, 2012. The site (100.36411° E, 38.84931° N) was located in a cropland (maize surface) in Daman irrigation district, which is near Zhangye, Gansu Province. The elevation is 1564.31 m. The EC was installed at a height of 4.9 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (Gill&Li7500) was 0.2 m. Raw data acquired at 10 Hz were processed using the Eddypro post-processing software (Li-Cor Company, http://www.licor.com/env/products/ eddy_covariance/software.html), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, angle of attack correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

2020-06-29

HiWATER: The multi-scale observation experiment on evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)-dataset of flux observation matrix (No.7 eddy covariance system )

This dataset contains the flux measurements from site No.7 eddy covariance system (EC) in the flux observation matrix from 29 May to 18 September, 2012. The site (100.36521° E, 38.87676° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1556.39 m. The EC was installed at a height of 3.8 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m. Raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

2020-06-29