Current Browsing: Leaf area index

LAI and FAPAR field measured datasets in Heihe Basin ( 2012 )

This data includes FAPAR and LAI data of ground sample points collected in 2012.The acquisition equipment were SunScane and lai-2000.Among them, the spread value was obtained by FAPAR measurement for 4 times.The sampling sites were located around zhangye on July 15, 2012 at solstice on July 4, 2012, including arol, linze, jiulongjiang forest farm, danoguchi and wuxing village.A total of 637 sets of data were measured.


FAPAR field measured datasets in Heihe basin (2011)

This data includes the fAPAR and Lai data collected in 2011. The acquisition equipment is SunScan and LAI-2000. Among them, fAPAR measures 4 times of spread value. The sampling points are located in Zhangye agricultural demonstration base on July 30, 2011, next to national highway 312 in Ejina banner on August 4, sandaoqiao in Ejina banner on August 5 and Jiuquan Satellite Launch Center on August 6, 2011. Around Zhangye from July 4 to July 15, 2012.


The parameters data of radar inversion in Tianlaochi Catchment in Qilian Mountain (2013)

Leaf area index (LAI), as a structural parameter of vegetation canopy, is an important input parameter for many inversion models such as energy and biomass inversion model. Firstly, vegetation points and ground points are separated in Terrasolid software. Then the transmittance of laser points is calculated, and the transmittance is the proportion of ground points to all points. After laser pulse hits the canopy, some energy passes through the voids between branches and leaves and continues to move forward until the energy is blocked, so some laser points will finally reach the ground. In this study, the ratio of the energy passing through the avoids to the energy of the canopy is used as the Laser Penetration Index (LPI). The LPI of each sample point at each scale in the study area was calculated.


HiWATER: Dataset of leaf area index by LAI2200 in the lower reaches of the Heihe River Basin

LAI observation was carried out for the typical underlying surface in the lower reaches of Heihe River Basin during the aviation flight experiment in 2014. The observation started on 24 July, 2014 and finished on 1 August, 2014. 1. Observation time On days of 24 July, 27 July, 30 July, 31 July and 1 August, 2014 2. Samples and observation methods Large areas with homogeneous vegetation (greater than 100 m * 100 m) were chosen as the observation samples. And forty field samples were selected according to the characteristics of vegetation distribution in the downstream. The land-use types including the cantaloupe, the Tamarix chinensis, the reeds, the weeds, the Karelinia caspica, the Sophora alopecuroides and so on. LAI data were calculated according to the transmittance derived from an A value (above-canopy readings) and four B values (below readings). More than two LAI values were obtained for each sample. At the same time, the heights of the vegetation in each sample were measured. 3. Observation instrument LAI 2200 4. Data storage The observation recorded data were stored in excel and the original LAI data were stored in txt files.


HiWATER: Dataset of vegetation LAI measured by LAI2000 in the middle reaches of the Heihe River Basin

This dataset is the LAI observation in the artificial oasis experimental region of the middle stream of the Heihe River Basin. The observation period is from 24 May to 20 September 2012 (UTC+8). Measurement instruments: LAI-2000 (Beijing Normal University) Measurement positions: Core Experimental Area of Flux Observation Matrix 18 corn samples, 1 orchard sample, 1 artificial white poplar sample Measurement methods: To measure the incoming sky radiation on the canopy firstly. Then the transmission sky radiation are mearued under the canopy for serveral times. The canopy LAI is retrieved by using the gap probability model.


WATER: Dataset of forest canopy gap fraction above the rain gauges observed by the camera at the super site around the Dayekou Guantan forest station

The dataset of forest canopy gap fraction above the rain gauges observed by the camera (PENTAX K100D, 2400×1600) was obtained at the super site (100m×100m, Qinghai spruce) around the Dayekou Guantan forest station from 9:00-10:40 on Jun. 4, 2008. Observation items included the ground-based LiDAR scanning, the total station measuring, DGPS, tally investigation, LAI, canopy spectrum, camera observations of the canopy, soil evapotranspiration, the soil frozen tube observations, surface roughness, precipitation interception, soil moisture and dry-wet weight of the forest component. A subplot (25m×25m) was chosen for precipitation interception observations with different canopy density, and 32 sets of photos were taken 1m above the ground. Through studying those photos, the number and location of rain gauges could be determined; and then the canopy density could also be further developed.


WATER: Dataset of ground truth measurements synchronizing with Envisat ASAR in the Linze station foci experimental area from Sep. 12 to Sep. 15, 2007 during the pre-observation period

The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in the Linze station foci experimental area from Sep. 12 to Sep. 15, 2007 during the pre-observation period. One scene of Envisat ASAR image was captured on Sep. 19. The data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:29 BJT. Observation items included: (1) GPS by GARMIN GPS 76 (2) LAI by LAI-2000 (3) photosynthesis measured by LI6400 from Linze station carried out according to WATER specifications. Raw data were archived in the user-defined format , which can be opened by notepat and processed by Excel. (4) object spectrum of typical ground objects measured by ASD FieldSpec Spectroradiometer (350~2 500 nm) from Gansu Meteorological Administration. The reference whiteboard was attached therein. Raw spectral data were archived as binary files, which were recorded daily in detail, and pre-processed data on reflectance were archived as text files (.txt). (5) infrared temperature measured by the handheld infrared thermometer from Cold and Arid Regions Environmental and Engineering Research Institute, which was calibrated. The infrared temperature of the crown, the vertical canopy, 45 degrees frontlight and backlight were measured respectively. The data were archived as Excel files. (6) soil profile (0-10cm, 10-20cm, 20-40cm and 40-60cm), and soil moisture measured by the cutting ring method. Profile photos were taken meanwhile. (7) quadrate (1m×1m) investigations, including the quadrate number, species, quantities, coverage, the total quadrate coverage, the mean height, biomass number, the total green weight and the total dry weight. (8) repeated measurements on chlorophyll content of different species measured by SPAD 502. (9) photos taken by Nikon D80 with a lens of Sigma 8mm F3.5 EX DG CIRCULAR FISHEYE, shooting straight downwards at the height of 1.5m (10) atmospheric parameters at Daman Water Management office measured by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 and can be opened by ASTPWin. ReadMetext files (.txt) is attached for detail. Processed data (after retrieval of the raw data) in Excel are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number.