Current Browsing: precipitation

Monthly mean vegetation index and precipitation data set of Heihe River Basin (1961-2010)

The monthly average vegetation index data of Heihe River Basin is based on MODIS 1 km and 250 m NDVI products. From 250 m products, the grid value of Heihe River Basin is proposed as precision control, and the 1 km product is modified by HASM method. The monthly average vegetation index of Heihe River Basin from 2001 to 2011 was obtained by fusing multi-source NDVI data using HASM method. Resolution: 1km * 1km The average precipitation data set of Heihe River Basin adopts the data information of 21 meteorological conventional observation stations in Heihe River Basin and its surrounding areas and 13 national reference stations around Heihe River basin provided by Heihe planning data management center. The daily precipitation data of each station from 1961 to 2010 is calculated. If the coefficient of variation is greater than 100%, the daily precipitation distribution trend can be obtained by using the geographic weighted regression to calculate the relationship between the station and the geographical terrain factors; if the coefficient of variation is less than or equal to 100%, the relationship between the station precipitation value and the geographical terrain factors (longitude, latitude, elevation) is calculated by ordinary least square regression, and the daily precipitation score is obtained HASM (high accuracy surface modeling method) was used to fit and modify the residual error after removing the trend. Finally, the trend surface results and residual correction results are added to get the annual average precipitation distribution of Heihe River Basin from 1961 to 2010. Time resolution: annual average precipitation from 1961 to 2010. Spatial resolution: 500M.


Precipitation during the growing season in Pailougou watershed (2011-2013)

Precipitation is one of the elements of meteorological monitoring and a measurement basis of regional precipitation. Precipitation is the only source of water for plants’ survival in mountain areas. Therefore, precipitation is the main link of the forest hydrological cycle. This data only provides precipitation of the Pailugou watershed during the growing season.


Simulation results of eco hydrological model in the middle and lower reaches of Heihe river v1.0 (2001-2012)

This project use distributed HEIFLOW Ecological hydrology model (Hydrological - Ecological Integrated watershed - scale FLOW model) of heihe river middle and lower reaches of the eco Hydrological process simulation.The model USES the dynamic land use function, and adopts the land use data of the three phases of 2000, 2007 and 2011 provided by hu xiaoli et al. The space-time range and accuracy of simulation are as follows: Simulation period: 2000-2012, of which 2000 is the model warm-up period Analog step size: day by day Simulation space range: the middle and lower reaches of heihe river, model area 90589 square kilometers Spatial accuracy of the simulation: 1km×1km grid was used on both the surface and underground, and there were 90589 hydrological response units on the surface.Underground is divided into 5 layers, each layer 90589 mobile grid The data set of HEIFLOW model simulation results includes the following variables: (1) precipitation (unit: mm/month) (2) observed values of main outbound runoff in the upper reaches of heihe river (unit: m3 / s) (3) evapotranspiration (unit: mm/month) (4) soil infiltration amount (unit: mm/month) (5) surface yield flow (unit: mm/month) (6) shallow groundwater head (unit: m) (7) groundwater evaporation (unit: m3 / month) (8) supply of shallow groundwater (unit: m3 / month) (9) groundwater exposure (unit: m3 / month) (10) river-groundwater exchange (unit: m3 / month) (11) simulated river flow value of four hydrological stations of heihe main stream (gaoya, zhengyi gorge, senmaying, langxin mountain) (unit: cubic meter/second) The first two variables above are model-driven data, and the rest are model simulation quantities.The time range of all variables is 2001-2012, and the time scale is month.The spatial distributed data precision is 1km×1km, and the data format is tif. In the above variables, if the negative value is encountered, it represents the groundwater excretion (such as groundwater evaporation, groundwater exposure, groundwater recharge channel, etc.).If groundwater depth is required, the groundwater head data can be subtracted from the surface elevation data of the model. In some areas, the groundwater head may be higher than the surface, indicating the presence of groundwater exposure. In addition, the dataset provides: Middle and downstream model modeling scope (format:.shp) Surface elevation of the middle and downstream model (in the format of. Tif) All the above data are in the frame of WGS_1984_UTM_Zone_47N. Take heiflow_v1_et_2001m01.tif as an example to illustrate the naming rules of data files: HEIFLOW: model name V1: data set version 1.0 ET: variable name 2001M01: January 2000, where M represents month


Deuterium oxygen isotope values of precipitation, river water and groundwater (including spring water) in Hulugou small watershed (July September 2015)

一. data description The data included the precipitation, river water and groundwater in the small calabash valley from July to September 2015 2H, 18O, with a sampling frequency of 2 weeks/time. 二. Sampling location (1) the precipitation sampling point is located in the ecological hydrology station of the institute of cold and dry regions, Chinese academy of sciences, with the latitude and longitude of 99 ° 53 '06.66 "E, 38 ° 16' 18.35" N. (2) the sampling point of the river is located at the outlet flow weir of haugugou small watershed in the upper reaches of the heihe river, with the latitude and longitude of 99 ° 52 '47.7 "E and 38 ° 16' 11" N.The water sampling point number 2 position for heihe river upstream hoist ditch Ⅱ area exports, latitude and longitude 99 ° 52 '58.40 "E, 38 ° 14' 36.85" N. (3) underground water spring and well water sampling points.The sampling point of spring water is located at 20m to the east of the outlet of the basin, with the latitude and longitude of 99°52 '50.9 "E, 38°16' 11.44" N. The well water sampling point is located near the intersection of east and west branches, with the latitude and longitude of 99 ° 52 '45.38 "E, 38 ° 15' 21.27" N. 三. Test method The δ2H and δ18O values of the samples were measured by PICARRO L2130-i ultra-high precision liquid water and water vapor isotope analyzer. The results were expressed by the test accuracy value of v-smow relative to the international standard substance, and the measurement accuracy was 0.038‰ and 0.011‰, respectively.


Nonstandard weather station diurnal data of Inner Mongolia Reach of the Yellow River’s Upstream (1956-2006)

I. Overview This data set contains daily meteorological data from the Inner Mongolia section of the Yellow River from Wuhai to Dalat Banner from 1952 to 2006. Non-standard station data includes two elements, namely: temperature and precipitation. Ⅱ. Data processing description The data is stored as integers, the temperature unit is (0.1 ° C) value, the precipitation unit is (0.1 mm), and it is stored as an ASCII text file. Ⅲ. Data content description Standard station data, temperature and precipitation are stored separately, which are temperature file and precipitation file. Ⅳ. Data usage description In terms of resources and environment, meteorological data is used to simulate the regional climate change and runoff, sediment, water and soil loss and vegetation changes in the basin, and is also a necessary input condition for remote sensing inversion.


Temperature and precipitation dataset of WRF model in Northwest China (1979-2013)

This data is the NCEP/DOE reanalysis data of 6h interval nested downscaling by WRF model in northwest China to a horizontal resolution of 12km, 364 grid points in the east-west direction, 251 grid points in the north-south direction and 31 layers in the vertical direction. The simulation time starts from 1979-01-01,06:00:00 and ends at 2013-12-31,23:00:00. The parameterization schemes of the model are as follows: Kain Frisch cumulus convection scheme, WSM3 cloud microphysics scheme, RRTM long wave scheme, Dudhia short wave scheme, Noah land surface model, YSU planetary boundary layer scheme. The file naming rules in the data set are: and, where YYYY is the annual abbreviation, t2 is the 2m temperature (unit ℃), and rain is the total surface precipitation (unit mm).


Canopy interception dataset of Picea crassifolia in Tianlaochi watershed of Qilian Mountain

The data are from 2011 to 2012. A 30m×30m Picea crassifolia canopy interception sample plot was set up in the Picea crassifolia sample plot at an altitude of 2800m m. A siphon raingauge model DSJ2 (Tianjin Meteorological Instrument Factory) was set up on the open land of the river about 50m from the sample plot to observe the rainfall outside the forest and its characteristics. Penetrating rain in the forest adopts a combination of manual observation and automatic observation. Automatic observation is mainly realized through a penetrating rain collection system arranged in the interception sample plot, which consists of a water collecting tank and an automatic recorder. Two 400cm×20cm water collecting tanks are connected with DSJ2 siphon rain gauge, and the change characteristics of penetrating rain under the forest are continuously recorded by an automatic recorder. Due to the spatial variability of the canopy structure of Picea crassifolia forest in the sample plot, a standard rainfall tube for manual observation is also arranged in the sample plot to observe the penetrating rain in the forest. Ninety rainfall tubes with a diameter of 20cm are arranged in the sample plot at intervals of 3m. After each precipitation event ends and the penetrating rain in the forest stops, the amount of water in the rain barrel will be emptied and the penetrating rain in the barrel will be measured with the rain cup.


Dataset of automatic meteorological observations at the Sub-Basin in Qilian Mountain (2011-2012)

The data set contains observation data from the Tianlaochi small watershed automatic weather station. The latitude and longitude of the station are 38.43N, 99.93E, and the altitude is 3100m. Observed items are time, average wind speed (m/s), maximum wind speed (m/s), 40-60cm soil moisture, 0-20 soil moisture, 20-40 soil moisture, air pressure, PAR, air temperature, relative humidity, and dew point temperature , Solar radiation, total precipitation, 20-40 soil temperature, 0-20 soil temperature, 40-60 soil temperature. The observation period is from May 25, 2011 to September 11, 2012, and all parameter data are compiled on a daily scale.


Evapotranspiration dataset of small lysimeter for sample plot in Tianlaochi watershed, Sidalong Forest Region, Qilian Mountain (June to September 2012)

This data comes from the Tianlaochi watershed sample plot. The vegetation types of the sample plot are grassland, shrub, Sabina przewalskii and Picea crassifolia. The self-made Lysimeter is mainly used to observe the soil evapotranspiration characteristics in Picea crassifolia forestry. To provide basic data for the development of watershed evapotranspiration model. At about 19:00 every day, an electronic scale with an accuracy of 1g is used to weigh the inner barrel. In case of rain, observe whether there is leakage in the leakage barrel. If there is leakage, measure the leakage amount in the leakage barrel as well. The observation period in 2011 is from May 30 to September 10. The observation period in 2012 is from June 11 to September 10. Observation instrument: 1) standard 20cm diameter rain tube rain gauge. 2) self-made lysimeter (diameter 30.5cm, barrel height 28.5). 3) Electronic balance (accuracy: 0.1g) used to observe the weight change of self-made lysimeter.


Evaporation data under alpine shrubs in Hulu watershed (2013)

This data set is the surface evapotranspiration data of Four Typical Shrub Communities in hulugou watershed. The observation period is from July 16 to August 23, 2013, which is the daily scale data. The data content includes precipitation data, evaporation and infiltration data observed by lysimeter. The data set can be used to analyze the evapotranspiration data of alpine shrub and forest. Data quality information: data quality is high, daily evapotranspiration data observation is complete. Data source description: a small lysimeter with an inner diameter of 25 cm and a depth of 30 cm was selected for evapotranspiration under the canopy. Two lysimeters were set up in each sample plot of evapotranspiration under the Bush, and one lysimeter was set up for each kind of Bush in the transplanting experiment. The undisturbed undisturbed soil column with the same height as the barrel shall be placed in the inner barrel during the layout, and the outer barrel shall be buried in the soil. During the embedding, the outer barrel shall be 0.5-1.0 cm higher than the ground, and the outer edge of the inner barrel shall be designed with a 2.0 cm wide rain shield to prevent the surface runoff from entering the lysimeter. Lysimeter was set up in the nearby meteorological station to measure the evapotranspiration of grassland, and a small evapotranspiration meter with an inner diameter of 25 cm and a depth of 30 cm was set up in the Picea koraiensis forest sample plot to measure the evaporation under the forest. All lysimeters shall be weighed on time at 20:00 every day (electronic balance sensing capacity is 1.0 g, which is equivalent to 0.013 mm evaporation). During observation, windproof treatment shall be done to ensure the accuracy of measurement. Data processing method: evapotranspiration is mainly calculated by mass conservation in lysimeter method. According to lysimeter design principle, evapotranspiration is mainly determined by mass difference in two consecutive days. Because it is weighed every day, it is calculated by water balance.