Current Browsing: Atmosphere


HiWATER: Dataset of flux observation matrix (automatic meteorological station of No.14) of the MUlti-Scale Observation EXperiment on Evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)

This dataset contains the automatic weather station (AWS) measurements from site No.14 in the flux observation matrix from 6 May to 21 September, 2012. The site (100.35310° E, 38.85867° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1570.23 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (HMP45D; 5 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 10 m), wind speed and direction (034B; 10 m, towards north), a four-component radiometer (CNR4; 6 m, towards south), two infrared temperature sensors (IRTC3; 6 m, vertically downward), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), soil moisture profile (ECh2o-5; -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), and soil heat flux (HFT3; 3 duplicates with one below the vegetation and the other between plants, 0.06 m). The observations included the following: air temperature and humidity (Ta_5 m and RH_5 m) (℃ and %, respectively), air pressure (press, hpa), precipitation (rain, mm), wind speed (Ws_10 m, m/s), wind direction (WD_10 m, °), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m^2), infrared temperature (IRT_1 and IR_2, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2 and Gs_3, W/m^2), soil temperature profile (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, and Ts_100 cm, ℃), and soil moisture profile (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, and Ms_100 cm, %). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

2019-09-15

HiWATER: Dataset of hydrometeorological observation network (automatic weather station of Shenshawo sandy desert station, 2013)

This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Shenshawo sandy desert station between 1 September, 2012, and 31 December, 2013. The site (100.493° E, 38.789° N) was located on a desert surface in the Shenshawo, which is near Zhangye city, Gansu Province. The elevation is 1594 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45AC; 5 and 10 m, north), wind speed profile (010C; 5 and 10 m, north), wind direction profile (020C; 10 m, north), air pressure (PTB110; 2 m), rain gauge (52203; 10 m), four-component radiometer (CNR1; 6 m, south), two infrared temperature sensors (IRTC3; 6 m, south, vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (109; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1 m), and soil moisture profile (CS616; -0.02, -0.04, -0.1, -0.2, -0.4, -0.6 and -1 m). The observations included the following: air temperature and humidity (Ta_5 m and Ta_10 m; RH_5 m and RH_10 m) (℃ and %, respectively), wind speed (Ws_5 m and Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm and Ts_100 cm) (℃), and soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm and Ms_100 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The precipitation data were missing during 31 March, 2013 and 26 July, 2013 because of the malfunction of rain gauge. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

2019-09-15

HiWATER: Dataset of hydrometeorological observation network (an observation system of meteorological elements gradient of Sidaoqiao superstation, 2013)

This dataset includes data recorded by the Hydrometeorological observation network obtained from an observation system of Meteorological elements gradient of Sidaoqiao Superstation between 11 July, 2013, and 31 December, 2013. The site (101.137° E, 42.001° N) was located on a tamarix (Tamarix chinensis Lour.) surface in the Sidaoqiao, Dalaihubu Town, Ejin Banner, Inner Mongolia Autonomous Region. The elevation is 873 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HC2S3; 5, 7, 10, 15, 20 and 28 m, towards north), wind speed profile (010C; 5, 7, 10, 15, 20 and 28 m, towards north), wind direction profile (020C; 15 m, towards north), air pressure (CS100; in waterproof box), rain gauge (TE525M; 28 m, towards south), four-component radiometer (CNR4; 10 m, towards south), two infrared temperature sensors (SI-111; 10 m, towards south, vertically downward), two photosynthetically active radiation (PQS-1; 10 m, towards south, one vertically upward and one vertically downward), soil heat flux (HFP01SC; 3 duplicates with G1 below the tamarix; G2 and G3 between plants, -0.06 m), a TCAV averaging soil thermocouple probe (installed on 17 July, 2013, TCAV; -0.02, -0.04 m), soil temperature profile (109ss-L; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2 and -1.6 m), and soil moisture profile (install on 7 December, 2013, ML2X; -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2 and -1.6 m). The observations included the following: air temperature and humidity (Ta_5 m, Ta_7 m, Ta_10 m, Ta_15 m, Ta_20 m and Ta_28 m; RH_5 m, RH_7 m, RH_10 m, RH_15 m, RH_20 m and RH_28 m) (℃ and %, respectively), wind speed (Ws_5 m, Ws_7 m, Ws_10 m, Ws_15 m, Ws_20 m and Ws_28 m) (m/s), wind direction (WD_15 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_up and PAR_down) (μmol/ (s m^-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm and Ts_160 cm) (℃), and soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm and Ms_160 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The wind speed (10 m height) data were missing before 12 November, 2013 because of the sensor problem. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

2019-09-15

HiWATER: Dataset of hydrometeorological observation network (an automatic weather station of Sidaoqiao barren-land station, 2013)

This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Sidaoqiao barren-land station between 9 July, 2013, and 31 December, 2013. The site (101.133° E, 41.999° N) was located on a barren-land surface in the Sidaoqiao, Dalaihubu Town, Ejin Banner, Inner Mongolia Autonomous Region. The elevation is 878 m. The installation heights and orientations of different sensors and measured quantities were as follows: four-component radiometer (CNR4; 24 m, south), two infrared temperature sensors (SI-111; 24 m, south, vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), and soil temperature profile (AV-10T; 0, -0.02 and -0.04 m). The observations included the following: four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), and soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm) (℃). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Data were missing during 24 September, 2013 and 26 September, 2013 because of the malfunction of datalogger. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

2019-09-15

HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of Sidaoqiao superstation, 2013)

This dataset contains the flux measurements from the Sidaoqiao superstation eddy covariance system (EC) in the lower reaches of the Heihe hydrometeorological observation network from 6 July to 31 December, 2013. The site (101.137° E, 42.001° N) was located in the Tamarix surface, Ejin Banner in Inner Mongolia. The elevation is 873 m. The EC was installed at a height of 8 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m. The raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), as proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened using a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.12 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

2019-09-15

HiWATER: Dataset of flux observation matrix (eddy covariance system of Zhangye wetland Station) of the MUlti-Scale Observation EXperiment on Evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)

This dataset contains the flux measurements from the Zhangye wetland station eddy covariance system (EC) in the flux observation matrix from 25 June to 26 September, 2012. The site (100.44640° E, 38.97514° N) was located in a wetland surface, which is near Zhangye city, Gansu Province. The elevation is 1460.00 m. The EC was installed at a height of 5.2 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (Gill&Li7500A) was 0.25 m. Raw data acquired at 10 Hz were processed using the Eddypro post-processing software (Li-Cor Company, http://www.licor.com/env/products/ eddy_covariance/software.html), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, angle of attack correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

2019-09-15

HiWATER: Dataset of hydrometeorological observation network (an automatic weather station of Sidaoqiao mixed forest station, 2013)

This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Sidaoqiao mixed forest station between 12 July, 2013, and 31 December, 2013. The site (101.134° E, 41.990° N) was located on a tamarix and populous forest (Tamarix chinensis Lour. and Populus euphratica Olivier.) surface in the Sidaoqiao, Dalaihubu Town, Ejin Banner, Inner Mongolia Autonomous Region. The elevation is 874 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45D; 28 m, north), wind speed and direction profile (034B; 28 m, north), air pressure (AV-410BP; in tamper box), rain gauge (52203; 28 m, south), four-component radiometer (CNR4; 24 m, south), two infrared temperature sensors (IRTC3; 24 m, south, vertically downward), two photosynthetically active radiation (PQS-1; 24 m, south, one vertically upward and one vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6 and -1.0 m), and soil moisture profile (ML2X; install on Dec. 7, 2013, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6 and -1.0 m). The observations included the following: air temperature and humidity (Ta_28 m; RH_28 m) (℃ and %, respectively), wind speed (Ws_28 m) (m/s), wind direction (WD_28 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_up and PAR_down) (μmol/ (s m^-2)), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm and Ts_100 cm) (℃), and soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm and Ms_100 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

2019-09-15

Watershed allied telemetry experimental research,WATER: The doppler weather radar observation dataset of Zhangye National climate observatory from Mar to Jun, 2008

This dataset contains Doppler Weather Radar data from the Zhangye National Climate Observatory during the Watershed Allied Telemetry Experimental Research from 2008-03-08 to 2008-06-30. The latitude and longitude of the observation point are 100°16.8'E, 39°05.094'N; the altitude is 1378m. The main observation items are: rainfall, cloud physics, weather radar, etc.

2019-09-15

HiWATER: Dataset of flux observation matrix (No.9 eddy covariance system) of the MUlti-Scale Observation EXperiment on Evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)

This dataset contains the flux measurements from site No.9 eddy covariance system (EC) in the flux observation matrix from 4 June to 17 September, 2012. The site (100.38546° E, 38.87239° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1543.34 m. The EC was installed at a height of 3.9 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (Gill&Li7500A) was 0.2 m. Raw data acquired at 10 Hz were processed using the Eddypro post-processing software (Li-Cor Company, http://www.licor.com/env/products/ eddy_covariance/software.html), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, angle of attack correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

2019-09-15

HiWATER: Dataset of hydrometeorological observation network (automatic weather station of Huangzangsi station, 2013)

This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Huangzangsi station between 10 June, 2013, and 31 December, 2013. The site (100.192° E, 38.225° N) was located on a cropland (wheat) surface in the Huangzangsi village, Babao town, Qilian County, Qinghai Province. The elevation is 2612 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45AD; 5 m, north), wind speed and direction profile (03001; 10 m, north), air pressure (278; in the tamper box on the ground), rain gauge (TE525M; 10 m), four-component radiometer (CNR4; 6 m, south), two infrared temperature sensors (IRTC3; 6 m, south, vertically downward), soil heat flux (HFT3; 3 duplicates with G1 below the vegetation; G2 and G3 between plants, -0.06 m), soil temperature profile (AV-10T; 0, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and soil moisture profile (CS616; -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), and soil moisture (Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

2019-09-15