简介:被誉为地球'第三极'的青藏高原,因其是驱动全球环境变化研究的重要区域,对整个地球的生态、环境、气候产生深刻的调控作用,一直是国际社会关注的热点。全球变暖背景下三极冰川、冻土、冻融湖等冰冻圈要素已经发生了显著变化,冰川快速退缩、冻土活动层增厚。长期以来,我国在以青藏高原为主体的世界第三极开展了系统的、多学科的研究,形成了丰富的研究积累。
发布时间:2022-03-10
数据集:176
该数据集结合中国第二次编目数据、空间分辨率30米且云量覆盖度低于10%的landsat系列光学影像数据及SRTM等多种数据的基础上,利用ArcGIS,ENVI和Google Earth等处理软件,通过人工目视解译的方法提取冰川边界10km范围内的冰湖边界,并对解译后的数据进行统一的冰湖的类型、所属山脉、省域、流域等属性添加、质量检验与精度验证。空间分辨率30米。 由两部分组成,分别为利用冰川编目数据生成冰湖分布区矢量文件和2015年中国西部冰湖编目数据集。 为中国西部冰湖-冰川耦合关系、水资源利用与管理等相关研究的参考数据,还可以作为区域气候变化与冰冻圈等相关研究的基础数据。
2018-10-03 6928 查看详情
青藏高原湖泊面积长时间序列数据集包含1970s至2013年364个面积大于10平方公里湖泊的面积序列数据。根据Landsat影像得来,以Landsat 10月份数据为主,每隔3年取一个数据,减少季节变化的同时,可利用数据达到最大。 数据使用NDWI水体指数提取,每个湖泊经过人工目视检查与编辑。 数据应用于青藏高原湖泊变化、湖泊水量平衡、气候变化的研究。 数据类型:矢量。 投影方式:WGS84。
2018-09-13 21528 查看详情
该数据集记录了阿里荒漠环境综合观测研究站,2009-2017年气象数据集,数据时间分辨率为天。包含如下基本气象参数:气温(距地面1.5米,半小时观测一次,单位:摄氏度)、相对湿度(距地面1.5米,半小时一次,单位:%)、风速(距地面1.5米,半小时一次,单位:米/秒)、风向(距地面1.5米,半小时一次,单位:度)、气压(距地面1.5米,半小时一次,单位:hPa)、降水量(24时一次,单位:毫米)、水汽压(单位:Kpa)、蒸发(单位:毫米)、向下短波辐射(单位:W/m²)、向上短波辐射(单位:W/m²) 、向下长波辐射(单位:W/m²) 、向上长波辐射(单位:W/m²) 、净辐射(单位:W/m²)、地表反照率(单位:%)。 数据采集地点:中国科学院青藏高原研究所阿里荒漠环境综合观测研究站观测场,经度:79°42'5";纬度:33°23'30";海拔:4264米。 数据从阿里站自动气象站直接下载,其中降水数据是自动雨雪量计和人工观测校正得到每天的降水量,其它均为半小时的观测值经平均得到逐日均值。 观测仪器型号:温度和湿度:HMP45C空气温湿度探头;降水:T200-B雨雪量仪传感器;风速和风向: Vaisala 05013风速风向传感器;净辐射:Kipp Zonen NR01净辐射传感器;气压:Vaisala PTB210大气压传感器。采集器型号:CR 1000,采集时间:30分钟。 本数据表是由专人根据观测记录进行加工和质量控制。严格按照仪器操作规范进行观测和数据采集,在加工生成数据表时,剔除了一些明显误差数据。
2018-09-08 6133 查看详情
欧亚大陆雪深数据集采用被动微波遥感反演方法制作,数据覆盖时间从1980年到2016年,时间分辨率为逐日,覆盖范围为欧亚大陆,空间分辨率为0.25°。遥感反演方法采用动态亮温梯度算法,算法考虑积雪特性在时空和空间上的变化,建立了不同频率亮度温度差与实测雪深在空间和季节上的动态关系。长时间序列星载被动微波亮度温度数据来自SMMR、SSM/I和SSMI/S三个传感器。为保证不同传感器亮度温度在时间上的一致性,在雪深提取之前对不同传感器亮度温度进行了交叉订正。通过实测站点的验证表明欧亚大陆雪深数据相对偏差在30%以内。数据据每一天存放一个txt文件,每个文件由文件头(投影方式)和720*332的雪深矩阵组成,每个雪深代表一个0.25°* 0.25°的格网。 数据的详细情况见欧亚大陆雪深数据集-数据说明。
2018-08-29 6361 查看详情
全球ERA-Interim 地面气温再分析数据集(1979-2016)是欧洲中长期天气预报中心(ECMWF)采用ECMWF IFS预报系统(T255,60层),经过窗口为12小时的四维变分同化系统(4DVAR)同化全球不同地区和来源的地表和上层大气的常规观测和卫星遥感资料(TOVS,GOES,Meteosat等)获得。该地面气温(2米气温)数据覆盖时间从1979年1月到2016年12月,时间分辨率为6小时,水平分辨率0.75°,覆盖全球,投影方式为等经纬度投影。数据每个月存放一个NetCDF格式文件,包含经度(longitude)、纬度(latitude)、时间(time)、气温(t2m,单位:K)四个变量,纬向241个格点,经向480个格点。
2018-08-25 5894 查看详情
河流湖泊等资源是研究地球生态环境的重要内容,影响全球生态系统、热量、物质交换和平衡,是研究全球环境机理变化的重要基础。当前,全球缺乏大尺度、高精度、大范围的湖泊矢量数据,阻碍了有关河流、湖泊的水文研究。研究以陈军等全球河流湖泊数据集作为源数据,结合2010年前后2-3年的国产高分影像GF数据,产生一套全球河流、湖泊数据集。这套数据集弥补了部分区域精度低的缺陷,是具有可编辑性的较高精度的湖、河矢量数据集。
2018-08-23 5204 查看详情
CMADS V1.0(The China Meteorological Assimilation Driving Datasets for the SWAT model Version 1.0) 版本数据集引入STMAS同化算法技术,利用数据循环嵌套、重采样,模式推算及双线性插值等多种技术手段而建立。CMADS数据集按照SWAT模型输入驱动数据格式进行了格式整理与修正,使SWAT模型可直接使用该数据集而不需要任何格式转换。CMADS系列数据集同时建立了两种格式的数据(.dbf和.txt),方便其他它模型应用人员及气象分析人员调用与分析。CMADS数据源介绍:气温、气压、比湿、风速驱动数据采用了2421个国家级自动站和业务考核的39439个区域自动站2008年1月以来地面基本气象要素逐小时观测数据以及相应时期的台站信息(台站经纬度、海拔高度),利用多重网格三维变分方法(STMAS),在NCEP/GFS背景场基础上制作地面基本要素分析场;其中,中国区域以外,只对NCEP/GFS背景数据做地形调整、变量诊断,并插值到分析格点;中国区域以内,利用STMAS算法,将经过前处理的NCEP/GFS背景数据和自动站观测融合,并与中国区域以外的数据进行拼接。降水:由多卫星与地面自动站降水融合而成。其中,中国区域以外采用NCEP-CPC制作的CMORPH卫星融合降水产品,中国区域采用CMORPH产品为背景场融合中国降水自动站观测制作的中国区域小时降水量融合产品。辐射:基于DISSORT辐射传输模型,获取来自FY2E卫星一级产品实时反演太阳短波辐射产品。主要以ISCCP资料为背景数据,利用大气辐射传输模式DISORT对FY2D/E标称图数据进行反演,计算出分析格点上的地面入射太阳总辐射辐照度。CMADSV1.0系列数据集空间覆盖整个东亚(0°N-65°N,60°E-160°E), 空间分辨率分别为CMADS V1.0版本: 1/3°,CMADS V1.1版本: 1/4°,CMADS V1.2版本: 1/8°及CMADS V1.3版本: 1/16°,以上分辨率均为逐日(CLDAS同化场基本分辨率为1/16°,保证了CMADS数据集最高分辨率达1/16°),时间尺度为2008-2016年。 本页发布的数据集为CMADSV1.0版本数据集(空间分辨率:1/3°。时间分辨率:逐日。空间覆盖范围:东亚(0°N-65°N,60°E-160°E)。提供要素:日平均2米温度,日最高\低2米温度,日累计24时降水量,日平均太阳辐射,日平均气压,日比湿度,日相对湿度,日平均10米风速,提供数据格式:dbf及txt。该驱动数据已在我国多个流域进行了驱动验证,效果表现良好。 数据集元数据介绍 CMADS--SWAT驱动数据总体存放路径说明: 数据集分为专门驱动SWAT模型的子数据驱动集与其他模型使用的数据驱动集 1)专门驱动SWAT模型的子数据集路径为:CMADS-V1.0\For-swat\ 2)专门其他模型使用的子数据集路径为:CMADS-V1.0\For-other-model\ CMADS--SWAT驱动数据各子集文件路径及名说明 CMADS--SWAT驱动数据子集路径 1)CMADS的SWAT子数据驱动集(For-swat文件夹内),包含Station\与Fork\子目录。 其中Station\目录下为SWAT模型需要的所有输入数据(逐日)。以上输入数据分别位于以下目录: Relative-Humidity-58500\ 日平均相对湿度(fraction) Precipitation-58500\ 日累计降水量(mm) Solar radiation-58500\ 日平均太阳辐射(MJ/m2) Tmperature-58500\ 日最高、最低2米气温(℃) Wind-58500\ 日平均10米风速(m/s) CMADS--SWAT驱动数据子集命名格式 中国大气数据同化SWAT模型数据集(CMADS)的SWAT子集文件命名: 数据集代码由要素代码:R、P、S、T、W+维度格网数-经度格网数组成(经纬度网格数提取参见CMADS数据集使用手册.pdf)。 CMADS--SWAT驱动数据子集命名格式实体文件的内容描述: 数据集时间尺度:2008年-2016年间共9年数据文件 空间分辨率:1/3度 时间分辨率:逐日 要素数据存放格式:dbf 索引表存放格式:txt CMADS--SWAT驱动数据子集索引表: 其中Fork\目录下为SWAT模型需要的所有站点索引表。以上输入数据索引表均可用以下索引表索引: PCPFORK.txt 降水索引表 RHFORK.txt 相对湿度索引表 SORFORK.txt 太阳辐射索引表 TMPFORK.txt 温度索引表 WINDFORK.txt 风速索引表 CMADS其他模式驱动数据子集路径 CMADS的SWAT子数据驱动集(For-other-model文件夹内),包括常规模型需要的所有气象输入数据(逐日)。以上输入数据分别位于以下目录: Atmospheric-Pressure-txt\ 日平均大气压强(hPa) Average-Temperature-txt\ 日平均2米气温(℃) Maximum-Temperature-txt\ 日最高2米气温(℃) Minimum-Temperature-txt\ 日最低2米气温(℃) Precipitation-txt\ 日累计降水(mm) Relative-Humidity-txt\ 日平均相对湿度(fraction) Solar-Radiation-txt\ 日平均太阳辐射(MJ/m2) Specific-Humidity-txt\ 日平均比湿(g/kg) Wind-txt\ 日平均10米风速(m/s) For-other-model 子集文件命名: CMADS_V1.0_PRS_纬度格网数-经度格网数.txt 日平均大气压强(hPa) CMADS_V1.0_TMP_AVG_纬度格网数-经度格网数.txt 日平均2米气温(℃) CMADS_V1.0_TMP_MAX_纬度格网数-经度格网数.txt 日最高2米气温(℃) CMADS_V1.0_TMP_MIN_纬度格网数-经度格网数.txt 日最低2米气温(℃) CMADS_V1.0_24h_PRE_纬度格网数-经度格网数.txt 日 24h 累计降水(mm) CMADS_V1.0_RHU_纬度格网数-经度格网数.txt 日平均相对湿度(fraction) CMADS_V1.0_SOR_纬度格网数-经度格网数.txt 日平均太阳辐射(MJ/m 2 ) CMADS_V1.0_SHU_纬度格网数-经度格网数.txt 日平均比湿(g/kg) CMADS_V1.0_WIND_纬度格网数-经度格网数.txt 日平均10米风速(m/s) 数据存储信息 存储格式和读取:数据集存储格式分为SWAT子集文件(dbf文件),及其他模式数据集(txt文件)。 数据集附属说明文档: metadata:元数据文档(CMADS_META_C.pdf)。 description:说明文档(CMADS_DOCU_C.pdf)。 数据总量:33.6GB 占用空间:35.2GB 时间范围:2008年-2016年 时间分辨率:逐日 地理范围描述:东亚 最西经度:60°E 最东经度:160°E 最北纬度:65°N 最南纬度:0°N 台站数量:58500站 空间分辨率: 1/3°×1/3°网格点 垂直范围:无
2018-08-22 43019 查看详情
采用供需平衡的分析方法,分别计算流域总体及各县区水资源供给量及需求量的基础上,评估流域水资源系统脆弱性。采用IPAT等式设置未来水资源需求情景,即通过设定未来的人口增长率、经济增长速度、单位GDP耗水量等变量来建立需水情景。以2005年为基准年,预测未来2010-2050年的各县市水资源需求情景。人口规模、经济规模采用配套预测数据。应用瑞典水文气象研究所HBV概念性水文模型的基本结构,设计了在气候变化下流域变化趋势的模型,以冰川融化情景为模型的输入,构建气候变化下出山径流情景。依据流域水资源配置的国家地方规定设置配水方案,综合计算水资源供给量。综合供需情况,以缺水率为指标评价水资源系统脆弱性。通过计算流域主要县市的(小麦生产)土地压力指数,分析了流域气候变化、冰川融化及人口增长情景下土地资源的供需平衡,评价了农业系统脆弱性。分别运用迈阿密公式及HANPP模型计算了未来情景下,流域各主要县市净初级生物生产量及初级生物量的人类占用,以供需平衡角度评估生态系统脆弱性。
2018-08-20 4848 查看详情
数据集包含了黄土高原地区影响土壤侵蚀的30m分辨率坡向因子,基于黄土高原地区高程数据提取的坡向数据。然后每个专题按1:25万地图标准分幅方式划分图幅,用1:25万标准图幅号命名。地理坐标系为WGS1984;精度可满足区域尺度水文和土壤侵蚀分析、预报的要求。
2018-08-14 4499 查看详情
总览我国现有的各种冻土图,他们在分类系统、数据源、制图方法等方面存在较大的不同,这些图件代表了我国在过去的半个世纪中对多年冻土分布的阶段认识。为了更加合理地反映我国冻土的分布,并统计出我国冻土分布面积,我们在分析现有冻土图的基础上,制备了一个新的冻土分布图,该图融合了现有多个冻土图和青藏高原多年冻土分布的模型模拟结果,统一了全国各部分数据的获取时间,反映了2000年左右我国冻土的分布状况。 新的冻土图中,各种冻土类型的分布按以下原则确定: 1. 底图采用中国冻土区划及类型图(1:1000万)(邱国庆 等,2000)。青藏高原以外的高山多年冻土和瞬时冻土的分布沿用原图;季节冻土和瞬时冻土、瞬时冻土和非冻土的界限也均无变化。青藏高原地区的多年冻土和东北地区高纬度多年冻土的分布则采用以下结果更新。 2. 青藏高原区域的高海拔多年冻土和高山多年冻土分布采用南卓铜 等(2002)的模拟结果进行更新。该模型利用青藏公路沿线76个钻孔实测年平均地温数据,进行回归统计分析,获取年平均地温与纬度、高程的关系,并基于该关系,结合GTOPO30高程数据(美国地质调查局地球资源观测与科技中心领导下发展的全球1km数字高程模型数据)模拟得到整个青藏高原范围上的年平均地温分布,再以年平均地温0.5C作为多年冻土与季节冻土的界限。 3. 东北地区的高纬度多年冻土分布采用了Jin et al. (2007)的最新结果。 Jin et al. (2007)通过对过去几十年东北年平均降水和土壤水分的分析,认为东北地区的多年冻土南界与年平均气温的关系在过去几十年中没有发生实质变化。 4. 其他地区的高山多年冻土分布采用中国冰川冻土沙漠图(1:400万)(中国科学院寒区旱区环境与工程研究所,2006)更新。 在分类系统方面,现有的冻土图对多年冻土的划分多采用连续性标准,但对连续性的具体定义有很大不同。很多研究表明,连续性标准是一个与尺度密切相关的概念,并不适合于高海拔多年冻土的分类(程国栋, 1984; Cheng et al., 1992),且该标准无法应用于以网格为基本模拟单元的多年冻土分布模型。在本文中,我们放弃了连续性标准,而以制图单元(网格或区域)内是否存在冻土为标准。新的冻土图将我国冻土分为几下几类: (1)高纬度多年冻土 (2)高海拔多年冻土 (3)高原多年冻土 (4)高山多年冻土 (5)中深季节冻土:可能达到的最大季节冻结深度>1m; (6)浅季节冻土:可能达到的最大季节冻结深度<1m; (7)瞬时冻土:保存时间不足一个月 (8)非冻土。 数据具体说明,请参考说明文档及引用文献。
2018-08-09 23872 查看详情
基于青藏高原国家气象站站点数据通过PRISM模型插值生成的高原气象要素分布图,主要包括气温和降水。 青藏高原1961-1990月均温分布图(30年平均值): t1960-90_1.e00,t1960-90_2.e00,t1960-90_3.e00,t1960-90_4.e00,t1960-90_5.e00, t1960-90_6.e00,t1960-90_7.e00,t1960-90_8.e00,t1960-90_9.e00,t1960-90_10.e00, t1960-90_11.e00,t1960-90_12.e00 青藏高原1991-2020月均温分布图(30年平均值): t1991-20_1.e00,t1991-20_2.e00,t1991-20_3.e00,t1991-20_4.e00,t1991-20_5.e00, t1991-20_6.e00,t1991-20_7.e00,t1991-20_8.e00,t1991-20_9.e00,t1991-20_10.e00, t1991-20_11.e00,t1991-20_12.e00, 青藏高原1961-1990月降水分布图(30年平均值): p1960-90_1.e00,p1960-90_2.e00,p1960-90_3.e00,p1960-90_4.e00,p1960-90_5.e00, p1960-90_6.e00,p1960-90_7.e00,p1960-90_8.e00,p1960-90_9.e00,p1960-90_10.e00, p1960-90_11.e00,p1960-90_12.e00 青藏高原1991-2020月降水分布图(30年平均值): p1991-2020_1.e00,p1991-2020_2.e00,p1991-2020_3.e00,p1991-2020_4.e00,p1991-2020_5.e00, p1991-2020_6.e00,p1991-2020_7.e00,p1991-2020_8.e00,p1991-2020_9.e00,p1991-2020_10.e00, p1991-2020_11.e00,p1991-2020_12.e00, 数据时间范围分为1961-1990年、1991-2020年。 数据覆盖的空间范围为东经73°~104.95°,北纬26.5°~44.95°,空间分辨率0.05度×0.05度(经度×纬度),大地坐标投影。 名称解释: 月均温:一个月中每天的日平均气温的平均数; 月降水:一个月降水量的总和。 量纲:数据的文件格式为E00文件,DN值为1~12月的月均温平均值(×0.01℃)、月降水平均值(×0.01mm)。 数据类型:整型。 数据精度:0.05度×0.05度(经度×纬度)。 本数据原始来源为两组数据集:1)青藏高原及周边地区128个气象站自建站至2000年的月均温、月降水观测资料;2)青藏高原50×50km网格的HadRM3区域气候情景模拟数据,即1991-2020年下月平均温度、月降水模拟值。 1961-1990年,对源数据集采用PRISM(Parameter elevation Regressions on Independent Slopes Model)插值方法生成网格数据,基于站点数据对插值模型进行调参和验证。1991-2020年,对区域气候情景模拟数据以地形趋势面插值方法降尺度生成网格数据。部分源数据来自GCM模型模拟的结果:GCM模型采用Hadley Centre climate model HadCM2-SUL。 a) Mitchell JFB, Johns TC, Gregory JM, Tett SFB (1995) Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature, 376, 501-504. b) Johns TC, Carnell RE, Crossley JF et al. (1997) The second Hadley Centre coupled ocean-atmosphere GCM: model description, spinup and validation. Climate Dynamics, 13, 103-134. 对气象数据进行空间插值采用PRISM (Parameter-elevation Regressions on Independent Slopes Model)方法: Daly,C., R.P. Neilson, and D.L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140~158. 因高原地区观测条件艰苦,基础研究数据缺乏,部分地区气象数据有缺失的现象。本数据集经调参和验证,精度尚可,但仅可做为宏观尺度气候研究的参考之用。青藏高原1961-1990月均温分布数据平均相对误差率为8.9%,青藏高原1991-2020月均温分布数据平均相对误差率为9.7%,青藏高原1961-1990月降水分布数据平均相对误差率为20.9%,青藏高原1991-2020月降水分布数据平均相对误差率为22.7%。对部分缺失数据的区域进行了插补,对明显错误的个别数值进行了修改。
2018-07-30 8162 查看详情
本数据包含两个数据文件,GLOBELAND30 TILES(原始数据)和TIBET_ GLOBELAND30_MOSAIC(镶嵌数据)。 原始数据下载自全球地表覆盖数据网站(GlobalLand3)(http://www.globallandcover.com),范围涵盖青藏高原及周边地区。原始数据分幅存储,为了便于用户使用数据,在分幅数据的基础上,我们使用Erdas软件对原始数据进行了拼接镶嵌。 全球地表覆盖数据(GlobalLand30)是国家863计划重点项目“全球地表覆盖遥感制图与关键技术研究”的科研成果,该数据利用美国陆地卫星影像(TM5、ETM+)和中国环境减灾卫星(HJ-1)影像数据,采用基于像素分类-对象提取-知识检核的综合方法提取而成。数据包括耕地、森林、草地、灌木、湿地、水体、苔原、人造覆盖、裸地、冰川和永久积雪10个一级地表覆盖类型,没有进行二级类型提取。在准确度评估方面,评估九种类型和超过150,000个测试样品。GlobeLand30-2010的整体精度达到80.33%。Kappa指标为0.75。 GlobeLand30数据采用WGS84坐标系,UTM投影,6度分带,参考椭球为WGS 84椭球。根据不同的纬度情况,采用2种分幅方式进行数据组织。在南北纬60°区域内,按照5°(纬度)×6°(经度)大小进行分幅;在南北纬60°至80°区域内,按照5°(纬度)×12°(经度)大小进行分幅,按照奇数6°带的中央经线进行投影。 GLOBELAND30 TILES:原始数据保留数据原貌,未进行处理。 TIBET_ GLOBELAND30_MOSAIC:使用erdas软件对原始数据进行镶嵌,参数设置使用默认值原始数据保留数据原貌,精度同下载网站。
2018-07-26 5317 查看详情
数据集综合了纳木错多圈层综合观测研究站、珠穆朗玛大气与环境综合观测研究站、藏东南高山环境综合观测研究站的大气、水文和土壤的长期监测数据。数据有三种分辨率,包括0.1秒、10分钟、30分钟、24小时不等。 野外的大气边界层塔(PBL)所使用的温湿度和气压传感器由芬兰的Vaisala公司生产,风速风向传感器由美国的MetOne公司生产,辐射传感器由美国的APPLEY公司和日本的EKO公司生产,气体分析仪由美国的Licor公司生产,土壤含水量、超声风速仪和数据采集器等由美国的CAMPBELL公司生产。定期(每年2-3次)由专业人员对观测系统进行维护,对传感器进行标定和更换,对采集的数据进行下载和整编,满足国家气象局和世界气象组织(WMO)的气象观测规范。 数据集加工方法为原始数据经过质量控制后形成时间连续序列,质量控制包括剔除曳点数据和传感器出现故障造成的系统误差。
2018-07-25 5814 查看详情
本数据集包含了雅鲁藏布江主要水文站径流年际变化特征值(多年平均径流量,年极值比,离差系数等),可用于研究雅鲁藏布江水文特征分析。原始数据为国家水文站数据,质量要求同国家相关标准。 空间范围:雅鲁藏布江流域干流拉孜、奴各沙、羊村、奴下等四个水文站。 本数据表共有五个字段 字段1:站名 字段2:多年平均径流量 字段3:年极值比 字段4:离差系数 字段5:资料系列长度
2018-07-23 6462 查看详情
本数据集包含自1982年至2006年基于生态学模式与遥感数据计算青藏高原植被净初级生产力(Net Primary Productivity,NPP)的结果。 基于遥感Advanced Very High Resolution Radiometer(AVHRR)数据和Carnegie-Ames-Stanford Approach(CASA)模型生成的青藏高原生态系统NPP(1982-2006),基于第二次土壤普查数据生成的土壤碳含量,以及基于High Resolution Biosphere Model(HRBM)模型生成的生物量碳数据。 青藏高原森林生态系统NPP(1982-2006年): npp_forest82.e00,npp_forest83.e00,npp_forest84.e00,npp_forest85.e00,npp_forest86.e00, npp_forest87.e00,npp_forest88.e00,npp_forest89.e00,npp_forest90.e00,npp_forest91.e00, npp_forest92.e00,npp_forest93.e00,npp_forest94.e00,npp_forest95.e00,npp_forest96.e00, npp_forest97.e00,npp_forest98.e00,npp_forest99.e00,npp_forest00.e00,npp_forest01.e00, npp_forest02.e00,npp_forest03.e00,npp_forest04.e00,npp_forest05.e00,npp_forest06.e00 青藏高原草地生态系统NPP(1982-2006年): npp_grass82.e00,npp_grass83.e00,npp_grass84.e00,npp_grass85.e00,npp_grass86.e00, npp_grass87.e00,npp_grass88.e00,npp_grass89.e00,npp_grass90.e00,npp_grass91.e00, npp_grass92.e00,npp_grass93.e00,npp_grass94.e00,npp_grass95.e00,npp_grass96.e00, npp_grass97.e00,npp_grass98.e00,npp_grass99.e00,npp_grass00.e00,npp_grass01.e00, npp_grass02.e00,npp_grass03.e00,npp_grass04.e00,npp_grass05.e00,npp_grass06.e00 青藏高原生物量碳、土壤碳: Biomass.e00,Socd.e00 土壤碳含量数据(Socd)是参考全国第二次土壤普查的数据与《中国1:100万土壤图》按土壤亚类插值生成。 NPP数据来自CASA模型与AVHRR数据模拟生成: Potter CS, Randerson JT, Field CB et al. Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochemical Cycles, 1993, 7: 811–841. 生物量碳数据来自HRBM模型模拟生成: McGuire AD, Sitch S, et al. Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochem. Cycles, 2001, 15 (1), 183-206. 原始资料主要是遥感数据和野外观测数据。精度较好;生产过程中与野外实测数据进行的验证和调参,是模拟结果尽量与野外实测数据保持在可接受的误差范围内;NPP数据与野外实测数据的验证结果表明,误差保持在15%的范围内。 空间分辨率0.05度×0.05度(经度×纬度)。
2018-07-22 5002 查看详情
本数据集包含了青藏高原主要城市与县1970-2006年牲畜数量变化序列数据,用于研究青藏高原社会经济变化。 数据表共有十个字段 字段1:年 解释:数据的年份 字段2:省 解释:所属的省份 字段3:市/州 解释:所属的市或者州 字段4:县 解释:县的名称 字段5:大牲畜(万头) 解释:牛、马、骡、驴、骆驼等大牲畜的数量 字段6:牛群(万头) 解释:牛的数量 字段7:马属动物(万头)解释:马、骡、驴等马属动物的数量 字段8:马(万头) 解释:马的数量 字段9:羊(万头) 解释:羊的数量 字段10:数据来源 解释:数据摘取的来源 数据来自统计年鉴与县志,部分清单如下: [1] 甘肃年鉴编委会. 甘肃年鉴[J]. 北京:中国统计出版社,1984,1988-2009 [2] 云南省统计局. 云南统计年鉴[J]. 北京:中国统计出版社,1988-2009 [3] 四川省统计局,四川调查总队. 四川统计年鉴[J]. 北京:中国统计出版社,1987-1991,1996-2009 [4] 新疆维吾尔自治区统计局. 新疆统计年鉴[J]. 北京:中国统计出版社,1989-1996,1998-2009 [5] 西藏自治区统计局. 西藏统计年鉴[J]. 北京:中国统计出版社,1986-2009 [6] 青海省统计局. 青海统计年鉴[J]. 北京:中国统计出版社,1986-1994,1996-2008. [7] 互助土族自治县志编纂委员会. 互助土族自治县志[J]. 青海:青海人民出版社,1993 [8] 海晏县志编纂委员会. 海晏县志[J]. 甘肃:甘肃文化出版社,1994 [9] 门源县志编纂委员会. 门源县志[J]. 甘肃:甘肃人民出版社,1993 [10] 贵南县志编纂委员会. 贵南县志[J]. 陕西:三秦出版社,1996 [11] 贵德县志编纂委员会. 贵德县志[J]. 陕西:陕西人民出版社,1995 [12] 尖扎县志编纂委员会. 尖扎县志[J]. 甘肃:甘肃人民出版社,2003 [13] 达日县志编纂委员会. 达日县志[J]. 陕西:陕西人民出版社,1993 [14] 格尔木市志编纂委员会. 格尔木市志[J]. 北京:方志出版社,2005 [15] 德令哈市志编纂委员会. 德令哈市志[J]. 北京:方志出版社,2004 [16] 天峻县志编纂委员会. 天峻县志[J]. 甘肃:甘肃文化出版社,1995 [17] 乃东县志编纂委员会. 乃东县志[J]. 北京:中国藏学出版社,2006 [18] 古浪县志编纂委员会. 古浪县志[J]. 甘肃:甘肃人民出版社,1996 [19] 阿克塞哈萨克族自治县志编纂委员会. 阿克塞哈萨克族自治县志[J]. 甘肃:甘肃人民出版社,1993 [20] 岷县志编纂委员会. 岷县志[J]. 甘肃:甘肃人民出版社,1995 [21] 宕昌县志编纂委员会. 宕昌县志[J]. 甘肃:甘肃文化出版社,1995 [22] 宕昌县志编纂委员会. 宕昌县志(续编)(1985-2005)[J]. 甘肃:甘肃文化出版社,2006 [23] 文县志编纂委员会. 文县志[J]. 甘肃:甘肃文化出版社,1997 [24] 康乐县志编纂委员会. 康乐县志[J]. 上海:三联书店. 1995 [25] 积石山(保安族 东乡族 撒拉族)自治县志编纂委员会. 积石山(保安族 东乡族 撒拉族)自治县志[J],甘肃:甘肃文化出版社,1998 [26] 碌曲县志编纂委员会. 碌曲县志[J]. 甘肃:甘肃人民出版社,2006 [27] 舟曲县志编纂委员会. 舟曲县志[J]. 上海:三联书店. 1996 [28] 夏河县志编纂委员会. 夏河县志[J]. 甘肃:甘肃文化出版社,1999 [29] 卓尼县志编纂委员会. 卓尼县志[J]. 甘肃:甘肃民族出版社,1994 [30] 迭部县志编纂委员会. 迭部县志[J]. 甘肃:兰州大学出版社,1998 [31] 彭县志编纂委员会. 彭县志[J]. 四川:四川人民,1989 [32] 灌县志编纂委员会. 灌县志[J]. 四川:四川人民出版社,1991 [33] 温江县志编纂委员会. 温江县志[J]. 四川:四川人民出版社,1990 [34] 什邡县志编纂委员会. 什邡县志[J]. 四川:四川大学出版社,1988 [35] 天全县志编纂委员会. 天全县志[J]. 四川:四川科学技术出版社,1997 [36] 石棉县志编纂委员会. 石棉县志[J]. 四川:四川辞书出版社,1999 [37] 芦山县志编纂委员会. 芦山县志[J]. 四川:方志出版社,2000 [38] 红原县志编纂委员会. 红原县志[J]. 四川:四川人民出版社,1996 [39] 汶川县志编纂委员会. 汶川县志[J]. 四川:巴蜀书社,2007 [40] 得荣县志编纂委员会. 得荣县志[J]. 四川:四川大学,2000 [41] 白玉县志编纂委员会. 白玉县志[J]. 四川:四川大学出版社,1996 [42] 巴塘县志编纂委员会. 巴塘县志[J]. 四川:四川民族出版社,1993 [43] 九龙县志编纂委员会. 九龙县志续篇(1986-2000)[J]. 四川:四川科学技术出版社,2007 [44] 贡山独龙族怒族自治县志编纂委员会. 贡山独龙族怒族自治县志[J]. 北京:民族出版社,2006 [45] 泸水县志编纂委员会. 泸水县志[J]. 云南:云南人民出版社,1995 [46] 德钦县志编纂委员会. 德钦县志[J]. 云南:云南民族,1997 [47] 于田县志编纂委员会. 于田县志[J]. 新疆:新疆人民出版社,2006 [48] 策勒县志编纂委员会. 策勒县志[J]. 新疆:新疆人民出版社,2005 [49] 和田县志编纂委员会. 和田县志[J]. 新疆:新疆人民出版社,2006 [50] 新疆且末县地方志编纂委员会. 且末县志[J]. 新疆:新疆人民出版社,1996 [51] 新疆莎车县志编纂委员会. 莎车县志[J]. 新疆:新疆人民出版社,1996 [52] 叶城县志编纂委员会. 叶城县志[J]. 新疆:新疆人民出版社,1999 [53] 新疆阿克陶县地方志编纂委员会. 阿克陶县志[J]. 新疆:新疆人民出版社,1996 [54] 新疆乌恰县地方志编纂委员会. 乌恰县志[J]. 新疆:新疆人民出版社,1995
2018-07-21 4227 查看详情
青藏高原湖泊水位观测数据集包含扎日南木错,巴木错,达瓦错,达则错和蓬错湖泊的水位日变化数据。 湖水水位通过安装在湖岸边的HOBO水位计(U20-001-01)观测,再通过安装在岸边的气压计或附近气象站气压数据进行校正,然后得到真实的水位变化。精度小于0.5cm。 数据集包含以下内容: 2010-2017年扎日南木错湖水水位日变化数据; 2013-2017年巴木错湖水水位日变化数据; 2013-2017年达瓦错湖水水位日变化数据; 2013-2017年达则错湖水水位日变化数据; 2013-2017年蓬错湖水水位日变化数据。 水位,单位:m。
2018-07-21 5160 查看详情
青藏高原冰芯-积雪黑碳含量数据集包括5个表:1 Xu et al. 2006 AG,2 Xu et al. 2009 PNAS_Conc,3 Xu et al. 2009 PNAS_flux,4 Xu et al. 2012 ERL,5 Wang et al. 2015 ACP。 数据采集地点包括煤矿冰川、冬克玛底、枪勇、抗物热、纳木那尼、慕士塔格、绒布、唐古拉山、宁金岗桑、左丘普、天山乌鲁木齐河源1号等冰川,采集地点经纬度,高程等信息在数据中均有标注。 数据主要指标为:地点、时间、有机碳(organic carbon,OC)、元素碳(elemental carbon,EC)、黑碳(black carbon,BC)含量和通量。 地点:经纬度 时间:年份或日期 OC:有机碳 EC:元素碳 BC:黑碳 Conc.:含量,单位:ng g-1 Flux:通量,单位:mg m-2a-1 数据来自课题: ①国家重点基础研究发展计划(973计划):全球变化敏感因子的时空特性与遥感模式化;负责人:徐柏青单位:中国科学院青藏高原研究所资助者:科技部 ②国家重点基础研究项目:青藏高原形成演化对全球变化的响应与适应对策;负责人:姚檀栋单位:中国科学院青藏高原研究所资助者:科技部 ③国家自然科学基金面上项目:青藏高原雪冰中高分辨率碳黑记录研究;负责人:徐柏青单位:中国科学院青藏高原研究所资助者:国家自然科学基金委 ④国家自然科学基金面上项目:青藏高原冰芯包裹气体中气候环境信息的提取;负责人:徐柏青单位:中国科学院青藏高原研究所资助者:国家自然科学基金委 ⑤国家自然科学基金杰出青年基金项目:青藏高原雪冰-大气化学与环境变化;负责人:徐柏青单位:中国科学院青藏高原研究所资助者:国家自然科学基金委 ⑥国家自然科学基金青年基金项目:藏东南冰芯近百年来南亚人类活动气溶胶排放与燃烧得变化研究;负责人:王茉单位:中国科学院青藏高原研究所资助者:国家自然科学基金委 观测方法:两步加热法、热/光学碳分析方法和单颗粒黑碳气溶胶光度计。
2018-07-21 4117 查看详情
青藏高原混合土壤水分数据产品是利用了遥感观测、原位测量和模型模拟技术。原位土壤水分(SM)观测结合了青藏高原气候带的分类,用于在高原尺度上产生原位测量的SM气候学。使用产生的青藏高原尺度原位SM气候学来缩放模型模拟的SM数据,其随后用于缩放SM卫星观测。然后通过应用三重配置和最小二乘法来客观地混合气候学尺度的卫星和模型模拟的SM。最终的混合SM可以复制不同气候区的SM动力学,从亚湿润地区到青藏高原的半干旱和干旱地区。 - 时间分辨率:天,从01/05/2008开始 - 空间分辨率:0.25°×0.25° - 数据集尺寸:61×121×975 - 单位:cm^3 cm^-3 数据质量开放评估。
2018-07-20 3005 查看详情
将冰湖划分为冰面湖、与冰川末端相连和非相连湖泊等三种类型。在分类的基础上,研究第三极地区各流域冰湖的数量与面积、不同大小面积变化幅度、与冰川距离远近、有冰川融水径流补给与无冰川融水径流补给冰湖面积的变化差异以及冰湖面积随海拔梯度变化特征等内容。 数据源:Landsat TM/ETM+ 1990,2000,2010。 数据通过目视解译,包括面积大于0.003平方公里的冰湖数据,结合原始影像与Google Earth检查编辑。 数据应用于第三极地区冰湖变化与冰湖溃决洪水( GLOF) 评估。 数据类型:矢量。 投影坐标系:Albers Conical Equal Area。
2018-07-20 4809 查看详情
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件