冰川表面运动提取在冰川动力学与物质平衡变化研究中具有重要意义,针对当前我国自主遥感卫星数据在冰川运动监测应用中存在的不足,选用GF-3卫星FSI模式下获取的2019—2020年间覆盖青藏高原高山区典型冰川的SAR数据,借助并行化偏移量跟踪算法获取了研究区冰川表面流速分布。GF-3影像凭借其良好的空间分辨率,在规模较小、运动缓慢的冰川运动提取方面具有显著的优势,能够更好地体现冰川运动细节信息及其差异性。该研究有助于分析气候变化背景下青藏高原地区冰川的运动规律及其时空演变特征。
闫世勇
南极McMurdo Dry Valleys 冰川表面流速遥感后处理产品,基于Antarctic Ice Sheet Velocity and Mapping Project(AIV)数据,通过先进的算法和数值工具后处理得到。该产品利用Sentinel-1/2/Landsat数据绘制,提供了McMurdo Dry Valleys 均匀、高分辨率(60m)的冰流速结果,时间覆盖范围从2015到2020。
江利明
本数据是基于气象观测数据、水文站点数据,结合各种同化数据和遥感数据,通过耦合积雪、冰川和冻土物理过程的青藏高原多圈层水文模型系统WEB-DHM(基于水和能量平衡的分布式水文模型)制备生成,时间分辨率为月尺度,空间分辨率为5km,原始数据格式为ASCII文本格式,数据种类包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。
王磊, 柴晨好
本数据是基于气象观测数据、水文站点数据,结合各种同化数据和遥感数据,通过耦合积雪、冰川和冻土物理过程的青藏高原多圈层水文模型系统WEB-DHM(基于水和能量平衡的分布式水文模型)制备生成,时间分辨率为月尺度,空间分辨率为5km,原始数据格式为ASCII文本格式,数据种类包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。
王磊, 刘虎
海冰的减少和表面融水的增加,可能诱发冰流加速和锋面塌陷,对格陵兰冰架的稳定性有重大影响。然而,由于稀少的遥感观测,快速崩解之前的详细冰动态前兆和驱动因素仍然不清楚。我们通过联合使用高时空分辨率的遥感观测和冰流模型,对格陵兰岛北部Petermann冰川2017年7月26日崩解事件前的水文和运动学前兆进行了全面调查。2017年7月期间的冰流速度场的时间序列是通过Sentinel-2的观测来检索的,采样间隔为次周。冰流速度在7月26日(崩解前一天)迅速达到30米/天,这大约是平均冰川速度的10倍。
江利明
冰川是全球气候变化的放大器和指示器,目前在全球气温升高的背景下,全球范围内冰川融化持续加快。跃动冰川是一种有着间歇性和周期性加速运动的冰川,其对气候变化非常敏感。本数据集基于Landsat和Sentinel系列多源光学卫星遥感影像数据,通过对影像进行筛选、拼接、裁剪获得研究区域影像。其中,对Landsat TM 影像中L1GS 级别影像采用二阶多项式进行配准校正,影像配准后误差小于一个像素。之后利用方向相关算法进行影像匹配,生成了格陵兰冰盖典型的跃动冰川——Sortebræ 冰川在1980s至2020 年期间不同阶段的表面运动速度。本数据集期望有助于对Sortebræ 冰川跃动过程的研究,以及对全球变暖背景下冰川跃动机理的探讨。
乔刚, 孙子翔, 袁小涵
南极冰盖21、22流域分布有松岛冰川、斯维特冰川等,是西南极融化最为剧烈的地区之一。本数据集首先利用Cryosat-2数据(2010年8月至2018年10月),在每个规则格网内,考虑地形项、季节波动、后向散射系数、波形前缘宽度及升降轨等因素建立平面方程,通过最小二乘回归计算格网内冰盖表面高程变化。另外,我们使用了ICESat-2数据(2018年10月至2020年12月),通过在每个规则格网内获取两个时期的卫星升降轨道交叉点处的高程差值,进而计算该时期内冰盖的表面高程变化。两个时期的面高程变化数据空间分辨率为5km×5km,文件格式为GeoTIFF,投影坐标为极地立体投影(EPSG 3031),并由所使用的卫星测高数据名称命名(即CryoSat-2、ICESat-2)。该数据可使用ArcMap、QGIS等软件打开。结果表明,该区域2010-2018年平均高程变化率为-0.34±0.08m/yr,属于融化剧烈地区。2018年10月-2020年11月年平均高程变化率为-0.38±0.06m/yr,相比于CryoSat-2计算结果该区域融化处于加剧状态。
杨博锦, 黄华兵, 梁爽, 李新武
数据为excel文件,文件包括4个表格,表格名称分别为:阿勒泰积雪DOC时间系列、阿勒泰积雪雪坑数据、阿勒泰积雪MAC(吸收截面)和中亚木斯岛冰川BC、OC、DUST数据四个表格。 阿勒泰积雪DOC表格含:样品编号、采样日期、采样时间、采样深度、DOC-PPM、BC-PPb和TN-PPM共七列,47个样品数据。 阿勒泰积雪雪坑表格含:雪坑号、样品编号、采样日期、采样时间、采样深度、DOC-PPM、BC-PPb和TN-PPM共8列,238个样品数据。 阿勒泰积雪MAC表格含:采样时间、MAC和AAE共3列,46个样品数据。 中亚木斯岛冰川BC、OC、DUST数据表格含:code no(样品号)、Latitute(纬度)、Longitude(经度)、/m a.s.l(海拔高度)、snow type(积雪类型)、BC、OC和DUST共8列,按采样时间分析。共105行数据。 缩写解释: DOC:Dissolved Organic Carbon 溶解性有机碳 MAC:mass absorption cross section吸收截面 BC:black Carbon黑碳 DUST:粉尘 OC:有机碳 TN:Total Nitrate (总氮) PPM:ug g-1 (微克每克 ) PPb:ng g-1( 纳克每克)
张玉兰
亚洲高山区是世界第三极,称之为“亚洲水塔”,受气候变暖的影响,冰川持续亏损,深刻改变了冰川水资源的供需关系。为了系统认识冰川对气候变化的响应程度,项目通过冰川物质平衡的敏感性,揭示冰川物质平衡变化与气候因子之间的关系。数据包括两张图:物质平衡对气温的敏感性和物质平衡对降水的敏感性图,冰川气候敏感性分区图。 在过去70年亚洲高山区各山系的冰川物质平衡演化序列差异显著,喀喇昆仑和西昆仑地区的冰川呈现出稳定态,物质平衡为微弱的正平衡,而喜马拉雅山、天山和祁连山在1990年之后出现加速退缩的趋势。这主要归因于物质平衡对气温、降水等敏感性。利用0.5°分辨率的ERA5 气温和降水数据驱动月尺度的物质平衡模型,通过43条监测冰川的物质平衡率定参数,2000-2016年的1°×1°ASTER物质平衡数据对参数进行空间约束,利用空间参数外推的方法重建了1951-2020年亚洲高山区95085条冰川的物质平衡序列,分析了冰川物质平衡对气温(±0.5k、±1k、±1.5k)和降水(±10%、±20%、±30%)的敏感性,根据物质平衡的空间敏感性差异,结合冰川物质平衡的影响要素(夏季气温的分布、夏季降水的比率、冰川类型的分布、夏季晴空太阳辐射分布等),对亚洲高山区的冰川气候敏感性进行归类划分,主要分为为4类: 气温主控区:指气温是冰川物质平衡变化的主要控制因素,降水占据次要位置; 降水控制区:指冰川主要受降水控制,全年的冰川区气温低于0℃; 冬季累积型冰川气温、降水控制区:指冰川主要受冬季的降水补给,冰川的物质平衡变化是气温和降水共同作用的结果; 夏季累积型冰川气温、降水控制区:指冰川的补给方式是夏季降水,冰川的物质平衡是气温和降水共同作用的结果。
上官冬辉
近年来,随着南极冰盖消融的加速,冰盖2000-2019表面形成大量冰面融水。深入理解南极冰盖冰面融水的时空间分布与动态变化,对于研究南极冰盖物质平衡具有重要意义。本数据集基于2000-2019年30m空间分辨率Landsat7和Landsat8影像,利用归一化水体指数、Gabor滤波和形态学路径开操作,生成冰面融水栅格数据集,在ARCGIS中将栅格水体掩膜转换为矢量数据。本数据集是基于Landsat影像提取的2000-2019年南极冰盖消融区(南极半岛亚历山大岛)250m冰面融水数据集。时间集中在每年12月至次年2月(南半球夏季)
杨康
我们提出利用U-net网络进行冰裂隙识别探测的算法,可以实现格陵兰冰盖典型冰川冰裂隙的自动化探测。基于Sentinel-1 IW每年7、8月的数据,为了抑制SAR图像的相干斑噪声,选择Probabilistic Patch-Based Weights (PPB)算法进行滤波,然后选择具有代表性的样本输入U-net网络进行模型训练,根据训练的模型进行冰裂隙的预测。以格陵兰2个典型冰川(Jakobshavn、Kangerdlussuaq)为例分类结果的平均准确率可达94.5%,其中裂隙区域的局部准确率可达78.6%,召回率为89.4%。
李新武, 梁爽, 杨博锦, 赵京京
我们提出利用U-net网络进行冰裂隙识别探测的算法,可以实现南极冰裂隙的自动化探测。基于Sentinel-1 EW 1月、2月的数据,为了抑制SAR图像的相干斑噪声,选择Probabilistic Patch-Based Weights(PPB)算法进行滤波,然后选择具有代表性的样本输入U-net网络进行模型训练,根据训练的模型进行冰裂隙的预测。以南极5个典型冰架(Amery、Fimbul、Nickerson、Shackleton、Thwaiters)为例分类结果的平均准确率可达94.5%,其中裂隙区域的局部准确率可达78.6%,召回率为89.4%。
李新武, 梁爽, 杨博锦, 赵京京
太阳总辐射和散射采用辐射表(CM22, Kipp & Zonen, 荷兰)测量,波长范围200-3600 nm。温湿度数据来源于IPEV/PNRA 项目 “Routine Meteorological Observation at Station Concordia” ,http://www.climantartide.it,地面水汽压单位为hPa。本数据集包括:利用经验模型计算的地面太阳总辐射、损失于大气中的吸收和散射辐射(小时累计值,单位MJ/m2)、大气顶和地表反照率;还包括散射因子(S/G)地面水汽压(E,单位hPa)。太阳辐射数据来源于数据提供者的计算、实验站测量,数据覆盖时间为2006-2016年(Bai, J.; Zong, X.; Lanconelli, C.; Lupi, A.; Driemel, A.; Vitale, V.; Li, K.; Song, T. 2022. Long-Term Variations of Global Solar Radiation and Its Potential Effects at Dome C (Antarctica). Int. J. Environ. Res. Public Health, 19, 3084. https://doi.org/10.3390/ijerph19053084)。该数据集可以用于南极Dome C地区太阳辐射及其衰减等相关研究。地面太阳辐射和其他气象数据可以参考:https://doi.org/10.1594/PANGAEA.935421
白建辉
太阳总辐射采用辐射表(CM21, Kipp & Zonen, 荷兰)测量,波长范围200-3600 nm。温湿度分别采用温湿度传感器HMP45C-GM (Vaisala Inc., Vantaa, Finland)测量。本数据集包括:利用经验模型计算的地面太阳总辐射、损失于大气中的吸收和散射辐射(小时累计值,单位MJ/m2)、大气顶和地表反照率;还包括散射因子(AF)地面水汽压(E,单位hPa)。太阳辐射数据来源于数据提供者的计算、实验站测量,数据覆盖时间为2007-2020年。关于数据处理和太阳总辐射计算等可参考文献:Bai, J.; Zong, X.; Ma, Y.; Wang, B.; Zhao, C.; Yang, Y.; Guang, J.; Cong, Z.; Li, K.; Song, T. 2022. Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma. Int. J. Environ. Res. Public Health, 19, 8906. https://doi.org/10.3390/ijerph19158906。该数据集可以用于珠峰地区太阳辐射及其衰减等相关研究。珠峰站太阳辐射和其他气象数据可以参考:https://data.tpdc.ac.cn/zh-hans/data/b9ab35b2-81fb-4330-925f-4d9860ac47c3/。
白建辉
1963年东南极Rayner冰川基于ARGON历史遥感影像的冰流速度场数据产品。利用间隔两个月的两张1963年拍摄的解密卫星影像,基于视差分解进行分层匹配,估算了南极洲东部雷纳冰川的早期冰流速度场。估算得到速度图的精度可达到70米/年。基于光学立体像对视差分解的协同冰川表面流速估算方法。首先对待匹配影像生成核心影像,并生成核心影像的金字塔;接下来使用冰流区域掩膜,将影像分为冰流区与非冰流区分别进行匹配,其中冰流区除正常匹配步骤外,还需要进行视差分界,从而区分冰流运动对于地形视差的影响。最终通过逐层匹配的方法,我们可以在底层得到物方的DTM及冰流图。本数据对于重建东南极Rayner冰川早期表面形态及其冰流速度具有重要意义。
李荣兴, 乔刚, 叶文凯
该数据集包含北极两条大河 (北美:Mackenzie,欧亚:Lena)的观测及模拟的入海径流量及各径流成分(总径流、冰川径流、融雪径流、降雨径流)的组成,时间分辨率为月。该数据是利用项目组制作的气象驱动场数据驱动发展的VIC-CAS模型,利用观测的径流及遥感积雪数据进行校正,径流的模拟的Nash效率系数达到0.85以上,模型也能较好地模拟积雪的空间分布和年内、年际变化。 该数据可用于分析长期的流域径流的组成及变化原因,加深对北极大河径流变化的理解。
赵求东, 吴玉伟
本产品提供了项目组发展的陆面模式VIC-CAS数值模拟的1971-2017年北极两条大河(北美大陆:Mackenzie,欧亚大陆:Lena)的水循环关键变量数据集,包括:降水量、蒸散发、地表径流、地下径流、冰川径流、雪水当量和三层土壤湿度等7个变量。该数据集空间分辨率为0.1degree,时间分辨率为月。该数据集可用于长期气候变化下北极大河流域水量平衡变化分析,也可用于遥感数据产品及其他模型模拟结果的对比和验证。
赵求东, 王宁练, 吴玉伟
本产品提供了项目组发展的陆面模式VIC-CAS数值模拟的1998-2017年北极两条大河(北美大陆:Mackenzie,欧亚大陆:Lena)的水循环关键变量数据集,包括:降水量、蒸散发、地表径流、地下径流、冰川径流、雪水当量和三层土壤湿度等7个变量。该数据集空间分辨率为50km,时间分辨率为月。该数据集可用于气候变化下北极大河流域水量平衡变化分析,也可用于遥感数据产品及其他模型模拟结果的对比和验证。
赵求东, 王宁练, 吴玉伟
山地冰川是中国西部及其周边地区重要的淡水资源。由于冰川融水在流域尺度为生态和社会经济用水提供补给,因此,确定冰川作用(补给)流域是开展冰川水资源供给功能和服务研究的基础。基于Randolph Glacier Inventory 6.0、中国历次冰川编目、中国三级流域边界数据(中国科学院资源与环境科学数据中心提供)和全球流域边界数据HydroBASINS(www.hydrosheds.org),通过将冰川分布数据与流域边界数据进行相交分析,生成了20世纪50年代至21世纪20年代(至今)(1)中国两级冰川作用流域边界、(2)中国冰川作用的国际河流流域边界以及(3)亚洲高山区冰川作用流域边界数据。该数据兼顾了中国和全球常用流域边界,并将二者很好匹配,以期为中国及其周边地区冰川水资源研究提供基础数据。
苏勃
冰川物质平衡是表征冰川积累和消融量值的重要冰川学参数之一。冰川物质平衡是联系气候和冰川变化的纽带,是冰川对所在地区气候状况的直接反映。气候变化导致冰川的物质收支状况发生相应的变化,而这种物质上的收支变化又可以引起冰川运动特征及冰川热状况的改变,进而导致冰川末端位置、面积和冰储量的变化。监测方法即在冰川表面设置固定标志花杆,定期监测冰川表面相对于花杆顶点的距离,以计算冰雪消融量;在积累区定时定点开挖雪坑或钻孔取样,测量雪层密度,分析雪-粒雪-附加冰层位特征,计算雪层积累量;再将单点监测结果绘到大比例尺冰川地形图上,按净平衡等值线法或等高线分区法计算整条冰川的瞬时、季节(如冬季和夏季)及年度的物质平衡分量。该数据集为青藏高原及天山地区不同代表性冰川年物质平衡数据,单位为毫米水当量。
邬光剑
冰川是西部山区河流的补给水源,是西部地区人们赖以生存、发展工、农、牧业的最基本要素之一。冰川既是宝贵的淡水资源,又是山区形成严重自然灾害的发源地,如突发性冰湖溃决洪水、冰川泥石流和冰崩等。冰川水文监测是研究冰川融水特征、冰川融水对河流的补给作用、冰川表面消融与径流关系、冰面产流和汇流过程、及冰川和季节性积雪融水诱发的洪水和泥石流计算和预报的基础。目前主要以在流域出山口建立水文监测站,开展实地监测为主。本数集为4条代表性冰川的月值径流数据 (珠西沟冰川、帕隆4号冰川、老虎沟冰川、七一冰川)。通过雷达或压力式水位计测量冰川融水相对水位变化,通过实地径流断面测流与相对水位建立径流曲线,计算每条冰川的径流总量,径流单位为m3/s。
杨威, 李忠勤, 王宁练, 秦翔
冰川区域内的近地表气温变化和温度预测的可靠性是水文和冰川学研究的重要问题,由于缺乏高海拔观测,这些问题仍然难以捉摸。本研究基于从 6 个不同流域的 12 个自动气象站、43 个温度记录仪和 6 个国家气象站收集的 2019 年气温数据,展示了不同冰川/非冰川地区的气温变化,并评估了不同温度预测的可靠性,以减少消融估计中的误差。结果表明,不同气候背景下温度递减率 (LRs) 的空间异质性很大,最陡峭的 LRs 位于寒冷干燥的青藏高原西北部,最低的 LRs 位于受暖湿季风影响的青藏高原东南部。青藏高原西部和中部高海拔冰川区的近地表气温受下降风的影响较小,因此可以从冰川外的记录中线性预测。相比之下,青藏高原东南部温带冰川上盛行的局地降风风对环境气温的降温作用明显,因此,冰川上气温明显低于同等海拔的非冰川地区。因此,来自低海拔非冰川站的线性温度预测可能导致正度日数高估 40%,特别是对于流线距离长且冷却效果显着的大型冰川。这些发现提供了值得注意的证据,表明在估算青藏高原冰川融化时,应仔细考虑不同气候条件下高海拔冰川的不同 LR 和相关冷却效应。
杨威
本数据为末次冰盛期以来亚洲高山区冰川分布的模拟数据,其中包括典型区域(亚洲高山区、天山、喜马拉雅山、帕米尔高原)年分辨率的冰川面积变化序列以及典型时期(LGM(20000~19000ka),HS1(17000~16000ka),BA(~14900~14350ka),YD(12900~12000ka),EH(9500~8500ka),MH(6500~5500ka),LH(3500~2500ka)和Modern(1951~1990))1km分辨率的亚洲高山区冰川分布。该数据以基于CCSM3气候模式的TRACE全强迫模拟试验数据为外强迫场,驱动1km分辨率的PISM冰盖模式,从而获取末次盛冰期以来亚洲高山区冰川的可能分布。该数据可以用于研究末次冰盛期以来亚洲高山区冰川分布的变化及其对湖泊水位、径流、地貌等环境和气候要素的影响。
燕青
包括典型冰川(浪卡子县枪勇冰川:东经90.23°,北纬28.88°,海拔4898米,地表覆被为基岩;申扎县甲岗山冰川:东经88.69°,北纬30.82°,海拔5362米,地表覆被为碎石和杂草)水下20cm左右,绝对压力和水体温度。该自动水位计的数据采用USB离线获取的方式收集,初始记录时间为2021年6月19日20时00分,记录间隔为10分钟,2021年9月18日11:00现场下载数据。数据完整。
张东启
该数据集是刘勇勤课题组从2010年以来多次野外采样积累的数据汇总而成,包括青藏高原12个冰川的冰芯和雪坑微生物丰度数据(5409条记录)和38个冰川的溶解性有机碳和总氮数据(2532条记录,包括冰芯、雪坑、表面冰、表面雪和冰前径流等生境)。所采样的冰川覆盖范围广,气候条件多样,多年平均气温从-13.4℃(古里亚冰川)到2.9℃(朱溪沟冰川),多年平均降水量从76.9毫米(15号冰川)到927.8毫米(24K冰川)。这些数据可为研究冰川碳氮循环和全球变暖背景下冰川退缩对下游生态系统的影响提供基础数据。
刘勇勤
格陵兰冰盖的物质损耗是近几十年来全球海平面上升的主要贡献者,在全球变暖的趋势下,格陵兰冰盖正在加速融化,探索其物质平衡对气候的变化响应具有重要的科学意义。作者基于MEaSUREs格陵兰触地线产品和流域边界,将触地线离散化,结合1985-2015年的MEaSUREs年度冰流速数据,和BedMachine v3冰厚度数据,矢量计算触地线各通量出口单元处冰通量;我们使用RACMO2.3p2模式的表面物质平衡数据,空间计算各流域表面物质平衡,并结合冰通量结果,得到格陵兰冰盖物质平衡数据集(1985-2015年)。该数据集包括1985年、2000年、2015年三年的格陵兰冰盖各流域物质平衡结果,含有各通量出口单元位置对应的年度冰流速、冰厚度、冰通量等信息。该数据集实现了触地线处冰通量的精细评估,可以反映近三十年格陵兰冰盖各流域物质平衡的变化情况和空间分布特征,为后续格陵兰冰盖物质平衡的精细变化评估及预测,和冰盖损耗机理探究提供基础性数据。
林依静, 刘岩, 程晓
南极冰盖是全球海平面上升的最大潜在来源之一,准确确定冰盖物质收支情况是理解南极冰盖动态变化的关键,对理解冰盖演变历程、准确预测未来全球海平面上升都是至关重要的。作者基于MEaSUREs触地线产品和MEaSUREs南极流域边界,将触地线离散化,结合1985-2015年的MEaSUREs和RAMP年度冰流速数据,和BedMachine冰厚度数据,矢量计算触地线各通量出口单元处冰通量;使用RACMO2.3p2模式的表面物质平衡数据,空间计算各流域表面物质平衡,并结合冰通量结果,得到南极冰盖物质平衡数据集(1985-2015年)。该数据集包括1985年、2000年、2015年三年的南极冰盖各流域物质平衡结果,含有各通量出口单元位置对应的年度冰流速、冰厚度、冰通量等信息。该数据集实现了触地线处冰通量的精细评估,可以反映近三十年南极冰盖各流域物质平衡的变化情况和空间分布特征,为后续南极冰盖物质平衡的精细变化评估及预测,和冰盖损耗机理探究提供基础性数据。
林依静, 刘岩, 程晓
格拉丹东地区是青藏高原重要的、典型的大江大湖源区。本数据集提供了不同时间尺度,不同分辨率的,覆盖长江和色林错源区冰川的DEM,用以计算源区冰川表面高程的季节变化和年代际变化。数据集包括了2016-2017年7景不同月份5米分辨率的TanDEM-X数据,可用以冰川表面高程的季节性变化计算;包括了1景1976年30米分辨率的KH-9 DEM,5景2011年30米分辨率的TanDEM-X,1景2014年和3景2017年30米分辨率的TanDEM-X,可用以计算1976-2000,2000-2011,2011-2017年期间冰川表面高程变化。同时采用Landsat ETM数据勾画,并按照RGI6.0分割了1976年的冰川轮廓数据;右图显示了该数据集的空间和时间覆盖信息,底图为正射校正后KH-9影像。
陈文锋
冰盖的表面高程对气候变化非常敏感,因此冰盖的高程变化被认为是评估气候变化的一个重要变量。长期的冰盖表面高程变化的时间序列是对理解气候变化有着重要作用的基础数据。将微波雷达卫星测高的观测数据连接起来可以建立目前最长的冰盖表面高程时间序列。但是,已有的任务间偏差改正方法在交叉标定不同的观测任务时仍然有误差残留。我们通过对常用的平面拟合模型进行修改,通过任务间偏差和升降轨道偏差的同时约束改正来确保不同任务间表面高程时间序列的自洽和连贯。基于这种方法,我们使用Envisat和CryoSat-2数据构建了2002-2019年间的南极冰盖高程变化时间序列。该时间序列是月均的格网数据,格网的空间分辨率为5-km。使用机载和星载激光测高数据对结果评估发现,与传统的方法相比,该方法可以将任务间偏差改正的精度提高40%。使用解算得到的高程时间序列,结合由密实化模型得到的表面过程造成的冰盖体积变化,我们发现冰动力过程使得阿蒙森海沿岸区域的冰盖成为南极冰盖体积损失最大的区域,而表面过程则主导了托腾冰川、毛德皇后地、伊丽莎白公主地和别林斯高晋海沿岸等冰盖的体积变化过程。西南极的冰体积损失超过了东南的体积积累。在2002–2019期间,南极冰盖的体积以初始速率−68.7 ± 8.1 km3/yr,加速度−5.5 ± 0.9 km3/yr2加速损失。
张保军, 王泽民, 杨全明, 柳景斌, 安家春, 李斐, 耿红
本数据集包含了全球77个冰川水化学要素(Na+、K+、Mg2+、Ca2+、TDS)的平均浓度、高亚洲典型冰川沉积物的矿物组成、以及高亚洲八个山系的冰川年径流量。本数据集来自数据集提供者对高亚洲19条冰川的实地监测,国内外已公开发表的数据资料、以及文献作者向数据集提供者私下共享的数据资料。本数据集可用于评估气候变暖对冰川侵蚀和化学风化作用的影响、可用于评估气候变暖驱动的冰川消融对下游生态系统和元素循环的潜在影响。
李向应
近年来,南极冰盖消融逐渐加速,南极冰盖表面发育了大量冰面融水,深入理解南极冰盖冰面融水的空间分布和动态变化,对于研究南极冰盖物质平衡具有重要意义。本数据集是基于Landsat-7、8和Sentinel-2影像提取的2000-2020年南极冰盖典型消融区(普利兹湾)10-30m冰面融水数据集。数据集投影为极地方位投影,格式为矢量(ESRI Shapefile)和栅格(GeoTIFF),时间为南半球夏季(12月-次年2月)。
杨康
本数据为祁连山地区2020年冰川分布产品。采用经典波段比值法和人工修正的方法提取。原始基础数据为2020年祁连山全境的高分系列影像。参考数据为谷歌影像和天地图影像。产品以shp文件格式存储,包含坐标系、冰川ID、冰川面积等属性。产品为1期,空间分辨率为2米,边界精度在2米(一个像元)左右。该数据直观地反映了祁连山冰川在2020年的分布,可用于冰川物质平衡变化定量估计、冰川变化对流域径流量影响定量估计等研究。
李佳
数据包含珠西沟冰川径流的钾、钠、钙、镁、氟离子、氯离子、硫酸根和硝酸根等指标,涵盖了大部分无机溶解组分。上述阴阳离子分别采用离子色谱和电感耦合等离子光谱仪等仪器测得,检测限低于0.01mg/L,误差低于10%;本数据可以用于反映珠西沟流域硫化物氧化、碳酸盐岩溶解和硅酸盐岩风化等化学风化过程对河水溶质的贡献,进而精准计算碳酸盐岩风化速率和硅酸盐岩风化速率,最终为评估冰川作用对岩石化学风化及其碳汇效应的影响提供科学依据。
邬光剑
冰川是西部山区河流的补给水源,是西部地区人们赖以生存、发展工、农、牧业的最基本要素之一。冰川既是宝贵的淡水资源,又是山区形成严重自然灾害的发源地,如突发性冰湖溃决洪水、冰川泥石流和冰崩等。冰川水文监测是研究冰川融水特征、冰川融水对河流的补给作用、冰川表面消融与径流关系、冰面产流和汇流过程、及冰川和季节性积雪融水诱发的洪水和泥石流计算和预报的基础。目前主要以在流域出山口建立水文监测站,开展实地监测为主。本数集为4条代表性冰川的月值径流数据 (珠西沟冰川、帕隆4号冰川、老虎沟冰川、七一冰川)。通过雷达或压力式水位计测量冰川融水相对水位变化,通过实地径流断面测流与相对水位建立径流曲线,计算每条冰川的径流总量,径流单位为m3/s。
杨威, 李忠勤, 王宁练, 秦翔
冰川表面微气象是观测冰川表面一定高度处风向风速、气温、湿度、气压、四分量辐射、冰温及降水等气象要素。冰川表面微气象监测是进行冰川监测的重要内容之一,是开展冰川表面能量-物质平衡、冰川运动、冰川融水径流、冰芯等研究及相关模型模拟研究的重要基础数据,为探究气候变化与冰川变化之间的相互关系奠定基础。主要通过在冰川表面架设高山气象站进行自动监测,也可使用便携式气象站进行短期的流动监测。近年来,在天山、西昆仑、祁连山、羌塘内陆、唐古拉山、念青唐古拉、藏东南、横断山和喜马拉雅山地区20多条冰川表面开展了相关的气象监测研究。该数据集为冰川区及冰川末端月值气象数据。
杨威
高分辨率冰芯孢粉记录能够指示季节性植被变化与气候指标的关系。本数据集对青藏高原作求普冰芯长32m的冰芯沉积物开展了高分辨率孢粉分析,获得了117个冰芯孢粉组合数据,所有数据为孢粉百分比数据,按照深度顺序排列。
吕厚远
1. 数据内容(包括的要素及意义) 冰川厚度即冰川表面与冰川底部间的垂直距离。冰川厚度的分布不仅受冰川规模与冰下地形控制,同时也随着冰川对气候响应阶段不同而变化。数据包含冰川测线经纬度、高程、单点厚度、测量冰川冰体总储量、测量仪器型号等信息。 2. 数据来源与加工方法 冰川厚度主要来源于钻孔和探地雷达测厚(Ground-Penetrating Radar, GPR)。钻孔法即在冰面进行钻孔至冰下基岩,从而获得单点的冰川厚度;冰川雷达测厚技术则能精确地测量出测线上冰川厚度的连续分布,同时获取冰下基岩的地形特征,从而为冰川储量估算和冰川动力学研究提供必要的参数 3. 数据质量描述 冰川钻孔数据精度达到分米级。GPR雷达测厚由于冰川性质及底界面雷达信号强度差异,测厚精度理论上在5%-15%之间,。 4. 数据应用成果与前景 冰川厚度是获取冰下地形和冰川储量信息的先决条件。在冰川动力学数值模拟与模型研究中,冰川厚度是一个重要的基本输入参数。同时,冰川储量是表征冰川规模和冰川水资源状况的最直接参数,不仅对冰川水资源的准确评估和合理规划及有效利用十分重要,更对于区域社会经济发展和生态安全具有重要和深远
邬光剑
青藏高原及其周边地区潜在冰湖分布数据为矢量数据(.shp),数据集中包含每个潜在冰湖的ID、面积、周长、体积和高程。数据按照流域被分为17个区域,分别是黄河,长江,湄公河,萨尔温江,雅鲁藏布江,恒河,印度河,以及鄂毕河流域,共8个外流流域;以及河西,塔里木,柴达木,准噶尔,伊犁,锡尔河,阿姆河,和蒙古高原流域,共9个内流流域。本数据从冰川厚度数据加工而来(由Farinotti et al. (2019)提供),使用ArcGIS软件,将地区原始DEM和冰厚度数据相减,得到无冰川分布的DEM,再利用填挖工具将位于冰川床下的洼地,即潜在冰湖,挖掘出来。本数据集的质量依赖原始的冰川厚度数据的质量,而冰厚度数据集的质量是目前所有类似数据中质量最好的。青藏高原及其周边地区潜在冰湖分布数据揭示了地区未来可能会形成的冰湖,对于未来地区冰湖的形成及其分布模式的理解至关重要,目前的结果表明,青藏高原及其周边地区存在着超过 16,000 个潜在冰湖,面积为2253.95 ± 1291.29 km2,体积为60.49 ± 28.94 km3, 这相当于海平面上升0.16±0.08 mm的水当量。
张太刚, 王伟财, 姚檀栋, 高坛光, 安宝晟
雷达穿透深度改正对于采用基于雷达DEM的大地测量方法进行准确估算冰川物质平衡至关重要。由于雪的分布不均和积雪性质不同,雷达的穿透深度会因地区而异,并且依赖于海拔高度,所以本数据集给出了高亚洲1°×1°网格的SRTM C/X波段雷达穿透深度差异。该数据集包含214个高亚洲1°×1°网格的SRTM X波段和C波段的穿透深度差异结果,以及每个网格的线性拟合表达式。基于大地测量方法,采用30 m分辨率的SRTM X波段和C波段 DEM,获得了高亚洲 X波段和C波段的冰雪穿透深度差异结果,采用50 m高程分段法和线性回归分析法得到了穿透深度差与海拔高程的关系(具体方法见参考文献)。数据以excel文件存储。该数据集可以为基于SRTM DEM的高亚洲物质平衡研究提供重要的基础数据,可供研究冰川、气候、水文等的科研工作者使用。
江利明
汞是一种全球性污染物。青藏高原毗邻当前大气汞排放最严重的地区南亚,可能受到长距离传输的影响。利用冰芯和湖芯可以很好地重建大气汞传输和沉降历史。基于青藏高原和喜马拉雅山南坡8支湖芯和1支冰芯重建了工业革命以来的大气汞沉降历史。本数据集包含青藏高原纳木错、班公错、令戈错、枪勇湖、唐古拉湖和喜马拉雅山南坡Gosainkunda湖、Gokyo湖和Phewa湖的8支湖芯数据,各拉丹冬1支冰芯数据。冰芯数据分辨率为1年,湖芯数据2~20年,数据包含汞浓度数据和沉降通量数据。
康世昌
包括典型冰川(浪卡子县枪勇冰川:东经90.23°,北纬28.88°,海拔4898米,地表覆被为基岩;申扎县甲岗山冰川:东经88.69°,北纬30.82°,海拔5362米,地表覆被为碎石和杂草)2019-2020年自动气象观测数据。枪勇冰川记录包含1.5米温度、1.5米湿度、2米风速、2米风向、地表温度等数据。该自动气象站的数据采用USB离线获取的方式收集,初始记录时间为2019年8月6日19时10分,记录间隔为10分钟,2019年10月24日现场下载数据,未能连接上。2020年12月20日16:30到现场下载数据,仍然无法连接到电脑,于是将数采仪取回带到北京后将数据读出。数据未缺失,但风速数据在2020年7月14日9:30之后有问题(极可能是风向标被破坏所致)。甲岗山冰川初始记录时间为2019年8月9日15时00分,记录间隔为1分钟,电源主要是通过蓄电池和太阳能板来维持。该自动气象站无内部存储,数据每小时通过GPRS上传至HOBO网站,由专人定期下载。2020年1月5日23:34,1.5米温湿度传感器出现异常,温度和湿度数据丢失。2020年6月30日21:20之后所有数据完全无法通过网站下载。2020年12月19日将数采仪取回,下载到2020年6月23日19:43至9月25日3:36的数据。之后更换温湿度传感器,于12月21日12:27重新开始观测。目前数据由三段组成(2019.8.9-2020.6.30;2020.6.23-2020.9.25;2020.12.19-2020.12.29),经检查,数据有部分缺失,个别数据因记录电池电压,时间上有重复,需要核对。甲岗山冰川前端气象观测数据使用美国ONSET 公司HOBO RX3004-00-01型号自动气象站采集,温湿度探头型号为S-THB-M002 ,风速风向传感器型号S-WSET-B ,地温温度传感器型号S-TMB-M006 。枪勇冰川前端气象观测数据使用美国ONSET 公司HOBO U21-USB型号自动气象站采集,温湿度探头型号为S-THB-M002 ,风速风向传感器型号S-WSET-B ,地温温度传感器型号S-TMB-M006 。
张东启
本数据集是在东绒布冰川通过野外架设气象站实测获得的气象观测资料,以excel形式存储,内含2个数据列表:Surface_energy_budget和Cycle。Surface_energy_budget数据集包括四分量辐射,风速风向温度湿度(1.5 m和2.5 m)。与辐射相关的气象要素为:向下短波、反射短波、向下长波、向上长波、净短波、净长波、净辐射、感热、潜热、地下传导热、云量(cloud index_根据Faiver et al. 2004, JGR)、南亚季风指数、反照率;Cycle列表,是5-7月气象要素的日循环值;第1行字段名称前缀“1”、“2”和“3”表示观测期的三个时段,分别是:1 May-28 May、29 May -16 June、17 June - 22 July。
刘伟刚
横断山冰川的消融观测,主要在贡嘎山东坡海螺沟冰川和贡嘎山西坡大、小贡巴冰川上进行。另外,在玉龙山东坡白水1号冰川上也作了一些消融观测。从上述两条山脉四条冰川的消融观测来看,还是有一定的区域代表性,使它们反映出横断山冰川消融的基本情况。本数据集记录了不同时间不同地点观测点的冰川消融数据:1982 年6-8月,玉龙山东坡白水1号冰川海拔4200m、4 600m和4800m三个高度的冰面消融观测数据。1982 年8月27日至1983 年8月底,贡嘎山东坡海螺沟冰川舌部不同高度的全年实测数据。1982年7月12日至1983年8月6日,贡嘎山西坡贡巴冰川消融观测数。
李吉均
该数据集为可可西里地区冰川分布状况记录,包含了可可西里地区各山地现代冰川分布状况,可可西里地区各流域现代冰川分布, 可可西里地区不同山地高度段内现代冰川分布状况三个表格。地处青藏高原腹地的可可西里地区,平均海拔在5000m以上,气候严寒。根据中国冰川目录和作者在1/10万地形图上重新统计,全区发育现代冰川437条,覆盖面积达1552.39平方千米,冰储量为162.8349立方千米,成为本区众多河流湖泊水体的重要补给源泉。通过该数据集可以更加深入了解该区冰川分布规律等。
李炳元
该数据集包含纳木那尼冰川(北支)2008-2018年的年物质平衡数据,侧碛和末端自动气象站2011-2019年日气象数据及冰面上2018-2019年的月均气温和相对湿度数据。 冰川物质平衡数据观测时间为每年9月底或10月初,采用冰面测杆和雪坑结合的方法进行观测,获取测杆点的物质平衡数据,然后计算整条冰川的年净物质平衡(具体方法见参考文献)。 2台自动气象站(AWSs,Campbell公司)分别安装在纳木那尼冰川侧碛和末端。AWS1观测时间为2011年10月1日-2018年11月30日,观测数据包括气温(℃)、相对湿度(%)、太阳辐射(W/m2),仪器半小时记录一次气象资料。AWS2观测时间为2010年10月19日-2018年11月30日,观测数据包括风速(m/s)、大气压(hPa)、降水 (mm),仪器每小时记录一次气象资料。首先剔除原始记录中的少量异常数据,然后计算这些参数的日值。数据质量方面:原始数据质量较好,缺失较少。 两个温湿度探头(型号:Hobo MX2301)于2018年安装于冰面,半小时记录一次数据。将半小时数据处理为月均值。原始数据质量较好,没有缺失。 数据以excel文件存储。 该观测资料可以为研究喜马拉雅西段北坡气候、冰川、水资源及其之间的关系提供重要的基础数据,可供研究气候、水文、冰川等的科研工作者使用。
赵华标
本数据集包括南极冰盖花杆、冰(雪)芯/雪坑、自动气象站高度仪和探地雷达观测的日平均、年平均和多年平均表面物质平衡数据。数据来自已发表的文献,数据报告及国际数据共享平台,经质量控制后,形成了到目前为止最为完善的南极冰盖表面物质平衡日、年和多年分辨率的数据集,其中年分辨率表面物质平衡数据跨度过去1000年。该数据集主要用于冰川学、气候学及水文学等学科领域,特别地可用于南极表面物质平衡时空变化定量分析,气候模式验证,驱动冰盖模式和粒雪化模型等等。
王叶堂
该数据提供了南极冰盖2013年-2019年间的年度冰流速产品,该产品是第一个采用Landsat 8 光学影像的全色波段(15米分辨率)获取的南极冰川流速年度产品。所使用的影像时间段为2013年12月-2019年4月。该南极年度冰流产品共采用了超过8万景Landsat 8影像,超过25万景形变测量结果。洲际冰流速产品采用了非局部均值滤波误差处理方法,裸岩区域作为标定的处理方法,提高了冰流的细节和定位精度。是至今为止南极覆盖最全、分辨率最高的年度产品。该产品可以作为评估南极冰盖物质平衡的重要基础资料,也可以作为冰川模型的标定产品。
沈强
本数据集包含由卫星重力测量数据得到的2002年4月至2019年12月南极冰盖质量变化数据。所采用的卫星重力数据来自于美国宇航局NASA与德国宇航局DLR合作的重力场恢复与气候学实验双星星座(GRACE,2002年4月至2017年6月)及其后续任务GRACE-FO (2018年六月至今)。由于GRACE和GRACE-FO之间有一年左右数据间断,我们额外采用了由欧洲空间局ESA的Swarm星座GPS数据反演得到的重力场数据(2013年12月至2019年12月)。所采用GRACE重力场数据为德州大学奥斯丁空间研究中心(CSR)、德国地学研究中心(GFZ)、美国宇航局喷气推进实验室(JPL)以及俄亥俄州立大学(OSU)四家机构发布产品的加权平均模型。GRACE数据后处理包括:用SLR数据解算结果替换GRACE低阶重力场参数(degree-1, C20和C30),去条带滤波,300公里高斯平滑,ICE6-G_D(VM5a)GIA模型,信号泄露误差改正,椭球误差改正等。
张宇, 沈嗣钧
青藏高原五大河源区冰川径流数据集覆盖时间从1971年到2015年, 时间分辨率为逐年,覆盖范围为青藏高原五条大江大河源区(黄河源,长江源,澜沧江源,怒江源,雅鲁藏布江源)。 数据以多源遥感和实测数据为基础,使用青藏高原五大河源区及其周边气象站点日尺度气象数据、UMD-1KM的全球植被产品、IGBP-DIS土壤数据库、第一、二次冰川编目数据等驱动模型,耦合了冰川模块的分布式水文模型VIC-CAS模拟形成了冰川径流数据。并使用站点实测数据对模拟结果进行了验证, 增强质量控制。 数据指标包含:冰川径流率(Rate of glacier runoff: %),总径流(Total Runoff,mm/a),雪径流率(Rate of snow runoff: %),降雨径流率 (降雨径流率:%)。
王世金
这组数据是1974-2016年期间珠峰北坡绒布流域三条绒布冰川及表碛覆盖冰川三个时间段的年均冰储量变化数据集,采用ESRI 矢量多边形格式存储,是由三个阶段的DEM高程差数据DHPRISM2006-DEM1974(DH2006-1974)、DHSRTM2000-DEM1974(DH2000-1974)、DHASTER2016-SRTM2000(DH2016-2000),结合冰川覆盖专题矢量数据、冰密度 850 ± 60 kg m−3计算而来。DHPRISM2006-DEM1974, or DH2006-1974, 是2006年PRISM2006 数据和1974年DEM1974之间的高程差,即DH2006-1974 =PRISM2006 – DEM1974。PRISM2006是由2006年12月4日的光学立体像对遥感数据ALOS/PRISM生成。DEM1974是由我国早期1:50,000地形图生成的,这两期DEM都采用横轴墨卡托投影、Krasovsky1940椭球体。PRISM2006与DEM1974配准后,非冰川区高程数据精度为±0.24 m a-1。DHSRTM2000-DEM1974(DH2000-1974)是,2000年SRTM与DEM1974的高程差,两期DEM数据配准后,非冰川区高程数据精度为±0.03 m a-1。DHASTER2016-SRTM2000(DH2016-2000)是基于Brun et al. (2017) 发布的冰面高程差数据,采用与DH2006-1974、DH2000-1974一样的数据处理方法与处理过程而得到, 在非冰川区高程数据精度为±0.08 m a-1。表格中包括的数据项有:Shape_Area,冰川面积(m2)、Name冰川名,EC74_00表示1974-2000年间平均每条冰川每年的冰面高程变化(m a-1),EC00_16表示2000-2016年间冰川每年的冰面高程变化(m a-1),EC74_2006是1974-2006年间冰川年均冰面高程变化(m a-1),MB74_00表示1974-2000年间每条冰川年均冰川物质平衡数据(m w.e. a-1),MB00_16表示2000-2016年每条冰川年均冰川物质平衡数据(m w.e. a-1),MB74_2006表示1974-2006年每条冰川年均冰川物质平衡数据(m w.e. a-1),MC74_2000表示1974-2000年间每条冰川每年冰储量变化(m3 w.e. a-1),MC00_2016表示2000-2016年间每条冰川每年的冰储量变化(m3w.e. a-1),MC74_2006表示1974-2006年间每条冰川每年的冰储量变化(m3w.e. a-1), Uncerty_EC,是每条冰川冰面高程变化的最大误差范围(m a-1)、Uncerty_MB,是每条冰川冰川物质平衡的最大误差(m w.e. a-1),Uncerty_MC, 是每条冰川冰储量变化的最大误差(m3w.e. a-1)。 MinUnty_EC,是每条冰川冰面高程变化的最小误差范围,MinUnty_MB,每条冰川冰川物质平衡的最小误差(m w.e. a-1),MinUnty_MC是每条冰川冰储量变化的最小误差(m3w.e. a-1)。该组数据可用于喜马拉雅山脉与高亚洲地区冰川变化、冰川消融水文水资源效应及其气候原因。
叶庆华
利用2004年2月至2008年10月ICESat R633卫星测高数据使用重复轨道平面拟合方法,获取南极Lambert Glacier/Amery Ice Shelf system区域的高程变化,使用IJ05 R2模型进行GIA 改正、投影面积变形改正,进而得到 30km*30km 分辨率的表面高程变化率,通过粒雪密度模型将结果转换为物质变化,和重力卫星 GRACE 重力卫星时变模型所得南极物质变化进行比较。
谢欢, 李荣兴
近年来,随着南极冰盖消融的加速,在冰盖表面形成了大量冰面融水。深入理解南极冰盖冰面融水的时空间分布,掌握冰面融水动态变化,对于研究南极冰盖物质平衡具有重要意义。本数据集是基于Landsat影像提取的2000-2019年南极冰盖典型消融区(南极半岛亚历山大岛)30m冰面融水数据集。本数据集投影为极地方位投影,数据集格式为矢量(shp)和栅格(tif),时间集中在每年的12月至次年2月(南半球夏季)。
杨康
这组数据是1974-2013年期间喜马拉雅山脉西段纳木那尼峰地区年均冰川物质平衡变化和冰储量变化数据集,采用ESRI 矢量多边形格式存储,是由两个阶段的DEM高程差数据DHSRTM2000-DEM1974(即DH2000-1974)、DHTanDEM2013-SRTM2000(DH2013-2000),结合冰川覆盖专题矢量数据、冰密度 850 ± 60 kg m−3计算而来。DHSRTM2000-DEM1974(DH2000-1974), 是2000年SRTM DEM2000数据和1974年1:50,000的DEM1974之间的高程差,即DH2000-1974 =SRTM2000 – DEM1974。DEM1974是由我国1974年航拍照片绘制1:50,000地形图生成的,两期DEM数据配准后,非冰川区高程数据精度为±0.13 m a-1。DHTanDEM2013-SRTM2000(DH2013-2000),是基于2013年10月17日一对TerraSAR-X和TanDEM-X (TSX/TDX)雷达数据与2000年SRTM DEM数据、采用差分干涉技术(D-InSAR)获取,在非冰川区高程数据精度为±0.04 m a-1。 表格中包括的数据项有: Area,冰川面积(m2)、GLIMS_Id表示冰川编号,EC74_00表示1974-2000年间平均每条冰川每年的冰面高程变化(m a-1),EC00_13表示2000-2013年间冰川每年的冰面高程变化(m a-1),MB74_00表示1974-2000年间每条冰川年均冰川物质平衡数据(m w.e. a-1),MB00_13表示2000-2013年每条冰川年均冰川物质平衡数据(m w.e. a-1),MC74_2000表示1974-2000年间每条冰川每年冰储量变化(m3 w.e. a-1),MC00_2013表示2000-2013年间每条冰川每年的冰储量变化(m3 w.e. a-1), Uncerty_MB是每条冰川年均冰川物质平衡数据误差(m w.e. a-1), Uncerty_MC表示每条冰川每年的冰储量变化的最大误差范围(m3 w.e. a-1)。该组数据可用于喜马拉雅山脉与高亚洲地区冰川变化、冰川消融水文水资源效应及其气候原因。
叶庆华
同济大学沈云中教授卫星重力团队利用GRACE Level-1B卫星重力数据解算了2002年至2016年的格陵兰区域质量变化时间序列,空间分辨率为1度×1度,时间分辨率为1个月。该时间序列的参考时间为2004年1月与2009年12月之间的中间时刻。 在数据处理过程中,采用ICE5G模型扣除冰后回弹GIA影响,同时利用德国地学研究中心最新发布的AOD1B RL06去混频模型,回加了GAD质量变化贡献。
沈云中
本数据集包含由卫星重力测量数据得到的2002年4月至2019年12月格陵兰岛冰盖质量变化数据。所采用的卫星重力数据来自于美国宇航局NASA与德国宇航局DLR合作的重力场恢复与气候学实验双星星座(GRACE,2002年4月至2017年6月)及其后续任务GRACE Follow-On(GRACE-FO,2018年6月至今)。此外为了填补GRACE和GRACE-FO之间的数据中断,我们额外采用了由欧洲空间局Swarm三星星座的GNSS轨道摄动数据反演得到的重力场数据。数据格式为Matlab数据文件,冰盖质量变化转化为等效水高,表达在0.25°x0.25°格网上,时间分辨率为1个月。本数据集可用于近二十年格陵兰岛冰盖质量变化特征及其与全球气候变化之间关系的研究。
张宇, 沈嗣钧
该数据集包含1975-2013年青藏高原地区的海螺沟冰川、帕隆94号冰川、七一冰川、小冬克玛底冰川、慕士塔格冰川15号冰川、煤矿冰川以及NM551冰川物质平衡数据。基于世界冰川目录中收集的冰川物质平衡观测数据(World Glacier Inventory,https://nsidc.org/data/G10002/versions/1)以及姚檀栋等发布于第三极环境数据中心平台的(Third Pole Environment Database,http://en.tpedatabase.cn/)冰川物质平衡观测数据以及Global Land Data Assimilation System(GLDAS)数据集提供的气象要素数据(meteo.xlsx中为提取出的各冰川几何中心所在数据网格上的气象要素,包括降水、近地面气温、净辐射、雪面蒸发和雪深时间序列),采用冰川物质平衡计算公式重构了1975-2013年上述七个冰川的物质平衡序列。此重构数据是基于已发布的冰川物质平衡数据对冰川物质平衡公式中的参数进行了率定,并利用冰川物质平衡公式对长时间序列物质平衡进行了重构,其中参数率定结果以及长时间序列数据重构结果均与相关研究成果进行了比对,论证了该数据成果的合理性,具体可参考以下论文。该数据可用于所涉及冰川区域水资源变化研究、扩充了青藏高原冰川物质平衡数据集,并可为未来冰川物质平衡重构相关研究提供参考。
刘晓婉
Snow is a significant component of the ecosystem and water resources in high-mountain Asia (HMA). Therefore, accurate, continuous, and long-term snow monitoring is indispensable for the water resources management and economic development. The present study improves the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua satellites 8 d (“d” denotes “day”) composite snow cover Collection 6 (C6) products, named MOD10A2.006 (Terra) and MYD10A2.006 (Aqua), for HMA with a multistep approach. The primary purpose of this study was to reduce uncertainty in the Terra–Aqua MODIS snow cover products and generate a combined snow cover product. For reducing underestimation mainly caused by cloud cover, we used seasonal, temporal, and spatial filters. For reducing overestimation caused by MODIS sensors, we combined Terra and Aqua MODIS snow cover products, considering snow only if a pixel represents snow in both the products; otherwise it is classified as no snow, unlike some previous studies which consider snow if any of the Terra or Aqua product identifies snow. Our methodology generates a new product which removes a significant amount of uncertainty in Terra and Aqua MODIS 8 d composite C6 products comprising 46 % overestimation and 3.66 % underestimation, mainly caused by sensor limitations and cloud cover, respectively. The results were validated using Landsat 8 data, both for winter and summer at 20 well-distributed sites in the study area. Our validated adopted methodology improved accuracy by 10 % on average, compared to Landsat data. The final product covers the period from 2002 to 2018, comprising a combination of snow and glaciers created by merging Randolph Glacier Inventory version 6.0 (RGI 6.0) separated as debris-covered and debris-free with the final snow product MOYDGL06*. We have processed approximately 746 images of both Terra and Aqua MODIS snow containing approximately 100 000 satellite individual images. Furthermore, this product can serve as a valuable input dataset for hydrological and glaciological modelling to assess the melt contribution of snow-covered areas. The data, which can be used in various climatological and water-related studies, are available for end users at https://doi.org/10.1594/PANGAEA.901821 (Muhammad and Thapa, 2019).
Sher Muhammad
过去五十年,阿拉斯加地区冰川对海平面贡献占全球山地冰川总贡献的三分之一。 在RGI6.0的基础上,我们利用遥感和地理信息系统技术对阿拉斯加地区冰川编目数据进行了更新。更新的冰川编目采用的数据源为2018年Landsat OLI空间分辨率15m遥感影像,使用的方法为人工解译。结果显示,阿拉斯加地区冰川编目包括了现有冰川27043条,总面积81285km2。数据误差4.3%。该数据将为研究全球变化大背景下阿拉斯加地区冰川变化评估、冰川变化的区域和全球影响提供重要的数据支撑。
上官冬辉, 李耀军
The dataset integrated glacier inventory data and 426 Landsat TM/ETM+/OLI images, and adopted manual visual interpretation to extract glacial lake boundaries within a 10-km buffer from glacier terminals using ArcGIS and ENVI software, normalized difference water index maps, and Google Earth images. It was established that 26,089 and 28,953 glacial lakes in HMA, with sizes of 0.0054–5.83 km2, covered a combined area of 1692.74 ± 231.44 and 1955.94 ± 259.68 km2 in 1990 and 2018, respectively. The current glacial lake inventory provided fundamental data for water resource evaluation, assessment of glacial lake outburst floods, and glacier hydrology studies in the mountain cryosphere region.
WANG Xin, GUO Xiaoyu, YANG Chengde, LIU Qionghuan, WEI Junfeng, ZHANG Yong, LIU Shiyin, ZHANG Yanlin, JIANG Zongli, TANG Zhiguang
本数据集是2017年青藏高原冰川数据,使用了210景Landsat8 OLI卫星多光谱遥感数据,时间从2013年至2018年,90%来源于2017年,85%的Landsat8 OLI数据成像于冬季。冰川数据是青藏高原净冰川覆盖范围,不包括表碛物覆盖部分。数据格式是TIFF,可以为青藏高原冰川变化、冰川水文研究提供基础数据支持。 数据内容: Value是冰川斑块在系统中自动生成的编码。 格网单元:30m 数据的投影方式:Albers等积圆锥投影。 数据加工方法:基于210景Landsat8 OLI卫星多光谱遥感数据,校正、镶嵌为假彩色合成影像(RGB:654),采用人工目视解译方法,参考波段比值法结果,结合SRTM DEM V4.1数据与Google Earth和HJ1A/1B卫星同一年不同季节的影像,剔除了山体阴影、季节性积雪的影响,参考我国第一期和第二期冰川编目数据,剔除了非冰川区的陡崖、裸露基岩等,综合提取净冰川专题矢量数据,不包括冰川末端位置不清的表碛物覆盖区域,冰川边界数字化精度为半个像元(15m)。通过对比分析,可知基于多数据源、参考多方法结果、综合专家经验知识人-机互动方法提取获得的山地冰川数据更准确。具体数据提取方法详见参考文献: Ye, Q., J.Zong,L.Tian et al. (2017). Glacier changes on the Tibetan Plateau derived from Landsat imagery: mid-1970s – 2000 – 2013. Journal of Glaciology,63(238), 273-87. DOI:10.1017/jog.2016.137。 原始遥感资料数据精度:30m 数据质量控制措施:冰川边界数字化精度控制在半个像元之内(15m)。 项目来源:中国科学院战略性先导科技专项(A类)(XDA19070302), 第二次青藏高原综合科学考察研究资助(2019QZKK0202),国家自然科学基金项目(41530748, 91747201)、中国科学院“十三五”信息化建设专项资助(XXH13505-06)。
叶庆华
1)数据内容:高分辨率西南极冰盖表面物质平衡格点数据库 投影:Polar Stereographic Projection 2)数据来源及加工方法:基于高分辨率冰芯代用资料、ERA-Interim再分析降水和蒸发数据和极地气候模式RACMO2.3输出结果,利用改进的类克里格插值方法,建立了西南极冰盖表面物质平衡格点数据集 3)数据质量描述:精度优于再分析资料。 4)数据应用成果及前景:该数据库可用于水文学、气候学及冰川学等学科领域,比如:气候模式(CMIP5及 CESM等)的验证,西南极冰盖物质平衡长时间尺度变化评估研究。
王叶堂
第三极地区近期冰川变化因其对下游水资源供给的重要意义而成为周边各国政府关注的热点。第三极地区冰川表面高程变化数据产品基于获取于2000年的SRTM和2015年前后ASTER立体像对,在第三极地区范围内选了40余个典型冰川区来进行相应时段冰川表面高程估算。本产品共计估算了第三极地区超过14000条冰川2000-2015s时段内的表面高程变化,调查面积约占整个第三极地区冰川面积的25%。数据的覆盖范围为除阿尔泰山以外的整个第三极地区,空间分辨率为30m。
陈安安
三极冰芯数据主要来源于美国国家海洋与大气局(NOAA: National Oceanic and Atmospheric Administration, https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/ice-core )。原始数据主要是文本格式,由相关单位与研究人员志愿提供。数据主要包含了氧同位素、温室气体浓度、冰芯年龄、等原始观测数据,也包含研究者根据观测数据生产的历史气温、二氧化碳浓度、甲烷浓度等。数据主要分为南极、北极、格陵兰岛及第三极区域。数据库包含打钻地址、时间、衍生产品、对应观测站点数据、参考文献等要素。衍生产品包含产品名称、类型、时间等要素。空间位置分为南极、北极、第三极,包含阿拉斯加、加拿大、俄罗斯、格陵兰岛等地区。对收集的数据通过整理与后处理后,采用Microsoft Office自带的Access数据库管理系统建立冰芯数据库。按照南极、北极、格林兰岛、第三极,分成四个子数据库,打开每个数据库中第一个表为readme,该表包含每个数据表信息及参考文献。
叶爱中
本数据是通过建立雅鲁藏布江流域WEB-DHM分布式水文模型,以气温、降水、气压等作为输入数据,模拟输出的5km逐月水文数据集,包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。本数据是通过建立雅鲁藏布江流域WEB-DHM分布式水文模型,以气温、降水、气压等作为输入数据,模拟输出的5km逐月水文数据集,包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。
王磊
本项目是基于东天山庙尔沟冰芯(94°19′E,43°03′N,4518 m)生物活性元素Fe等元素数据,重建了1956-2004金属元素历史。数据内容:1956-2004年冰芯金属元素(包括:Fe, Cd, Pb, As, Ba, Al, S, Mn, Co和Ni);数据来源,通过ICP-MS测试;数据质量:空白样品显著低于样品值,质量较好;数据应用成果及前景:数据已发表,具体信息见Du, Z., Xiao, C., Zhang, W., Handley, M. J., Mayewski, P. A., Liu, Y., & Li, X. (2019). Iron record associated with sandstorms in a central Asian shallow ice core spanning 1956–2004. Atmospheric environment, 203, 121-130.,可提供中亚其他冰芯对比研究。
杜志恒
冰川对区域和全球气候变化异常敏感,因此常被作为气候变化的指示器之一,其相关参数也是气候变化研究的关键指标,特别是在地球三极环境变化对比研究中,冰川速度的时间和空间差异性对比是气候变化研究的重点之一。但由于冰川基本位于高海拔、高纬度和高寒地区,自然环境恶劣、人迹罕至,缺乏且难以开展大规模冰川运动的常规现场测量工作,为了能够及时高效、全面和准确地了解三极地区冰川运动状况,利用雷达干涉测量、雷达和光学影像像素跟踪等方法获取了三极地区部分典型冰川2000-2017年部分年份的表面运动分布情况,为三极冰川运动的对比分析提供了基础资料。数据集包含12个栅格文件,栅格文件名为“某地区某时段冰川运动”,每一幅栅格图主要包含以某一典型冰川所在的区域流速分布。
闫世勇
本产品基于多源遥感DEM数据生成,步骤如下:以Landsat ETM+、SRTM 和ICESat遥感数据为参考在相对稳定和平坦的地形区域内选控制点。控制点水平坐标是以Landsat ETM+ L1T全色影像作为水平参考进行获取。控制点的高度坐标则主要通过ICESat GLA14高程数据进行获取,在无ICEsat分布的区域内以SRTM高程数据补充。利用选取的控制点和自动生成的连接点,通过Brown’s物理模型对透镜畸变和残余形变进行补偿,使得所有立体像对的空中三角测量结果中影像总RMSE<1个像素。为了对提取的DEM数据进行编辑以消除明显的高程异常值,采用了DEM内插、DEM滤波和DEM平滑等方法对冰川上的DEM进行了编辑,并对西昆仑-西和西昆仑-东区域的KH-9 DEM数据进行了拼接,从而形成产品。
周建民
本项目是基于东天山庙尔沟冰芯(94°19′E,43°03′N,4518 m)高氯酸等元素数据,重建了1956-2004高氯酸历史变化。数据内容:1956-2004年高氯酸浓度(包括:Cl-, NO3- 和SO42-);数据来源,通过ESI-MS/MS测试;数据质量:空白样品显著低于样品值,质量较好;数据应用成果及前景:数据已发表,具体信息见Zhiheng Du, Cunde Xiao, Vasile I. Furdui C,Wangbin Zhang. (2019). The perchlorate record during 1956–2004 from Tienshan ice core, East Asia. Science of the Total Environment.可提供中亚其他冰芯对比研究。
杜志恒
冰盖高程变化数据首先利用2004年和2008年的GLAS12的数据获取两年间的重复轨道,在理想情况下每个轨道都是严格重复测量的,但由于轨道偏差,无法保证轨道按照设计严格重复,偏差在几米到几百米不定,取500m*500m的格网,认为落在同一格网内的点为重复轨道的重复点,相减获取2004-2008年的高程变化,获得年度的高程变化。在格陵兰中部地形平缓区域,高程变化较为准确,但在边缘地带,高程变化明显存在较大误差,可能是因为在边缘区域的坡度较大,500m*500m的范围内的点的高程会有较大的变化,因此在边缘区的高程变化有待改正。为对比不同的方法,采用2004年和2008年的GLAS12的春季数据获取这两年间的交叉点,2004年的降轨与2008年的升轨可以获得一组交叉点对应的高程变化;2004年的升轨与2008年的降轨也可以获得一组交叉点对应的高程变化。两组交叉点作为2004年到2008年的高程变化数据,采用克里金插值获得高程变化图。采用交叉点的方法获取的高程变化得到在边缘区域的结果有明显的改善,但在格陵兰东中部部分区域内的高程变化趋势有明显的误差,这些误差可能是季节性变化引起的。因此,采用2004年到2008年的GLAS12的春季数据获取每两年间的交叉点,每两年可以获得两组交叉点数据,总共获得十组交叉点。将这十组交叉点作为2004年到2008年的高程变化数据,与前两次比较发现,高程变化精度有所提高。
黄华兵
微波散射计冰盖冻融数据覆盖时间更新到2015年到2019年,空间分辨率为4.45km.时间分辨率为逐日,覆盖范围为南北极冰盖。基于微波辐射计的遥感反演方法考虑积雪特性在时空和空间上的变化,首先提取散射计数据的DVPR时间序列数据,有效利用散射计数据的高时间分辨率,同时利用通道差去除地形带来的影响;随后利用广义高斯模型对每一个采样点时间序列的方差值进行拟,以此来区分出干湿雪点,即确定融化范围,这种广义高斯模型相比于传统的双高斯模型需要的输入参数少,得到的阈值也具有唯一性;最后利用移动窗分割算法来精确找到湿雪点的融化开始时间、 结束时间以及持续时间, 可以有效地去除融化或非融化时期的温度突变所带来的影响。长时间序列星载微波散射计数据来自QSCAT和ASCAT两个传感器。通过实测站点的验证表明南极冰盖冻融探测精度在70%以上。数据每一天存放一个bin文件,基于微波散射计的南极冻融数据每个文件由810*680的栅格组成,格陵兰冰盖冻融数据每个文件由810*680的栅格组成(0值:非融化区域,1值:融化区域)。
梁雷
微波辐射计冰盖冻融数据集覆盖时间更新到2016到2019年,空间分辨率为25 km;基于微波辐射计的遥感反演方法采用改进的基于小波冰盖冻融探测算法,算法考虑冰盖冻融亮温特性在时间上的变化,首先利用小波变换对格陵兰所有冰盖区域的长时间亮度温度数据进行小波多尺度分解,在不同尺度下对边缘信息进行分析。再次,采用方差分析的方法将冰盖融化和重新冻结过程产生的边缘信息从噪声中分离出来。基于已提取的冰盖长时间亮度温度变化边缘信息,利用广义高斯模型来确定干雪和湿雪分类的最优边缘阈值, 从而探测出格陵兰冰盖发生融化的区域。最后,基于空间自动纠错的原理,运用空间邻域纠错算子对由噪音引起的错误结果进行探测,并进行人工纠错。长时间序列星载被动微波亮度温度数据来自SMMR、SSM/I和SSMI/S三个传感器。为保证不同传感器亮度温度在时间上的一致性,在冻融提取之前对不同传感器亮度温度进行了交叉订正。通过实测站点的验证表明格陵兰冰盖冻融探测精度在70%以上。数据每一天存放一个bin文件,基于微波辐射计的南极冻融数据每个文件由316*332的栅格组成,格陵兰冰盖冻融数据每个文件由304*448的栅格组成(0值:非融化区域,1值:融化区域)。
梁雷
基于sentinel-1超分宽幅SAR数据,利用提出的U-net冰裂隙探测方法,形成了南北极冰盖冰裂隙高程数据。首先对sentinel-1超分宽幅SAR数据预处理,主要包括辐射定标、冰盖范围确定和斑点噪声去除。其中,为抑制SAR数据的斑点噪声,同时为了保证冰裂隙特征,我们采用了去除乘性噪声的PPB方法。该方法既能有效去除斑点,还能保留冰裂隙的特征。其次,我们利用提出的基于U-net的冰裂隙探测算法进行冰裂隙提取。为了获取正确冰裂隙SAR数据样本,我们通过比对冰裂隙高分辨率光学数据来对SAR样板进行选取,从而形成冰裂隙SAR数据样本。基于冰裂隙区域和非冰裂隙区域SAR数据样本,我们利用U-net方法对冰裂隙进行提取。最后,我们对探测出的冰裂隙数据进行地理编码形成南北极冰盖冰裂隙产品。
梁雷
目前,基于提出的利用变化检测和决策树算法的SAR冰盖冻融探测算法,利用sentinel-1 EW SAR数据对南北极冰盖月平均冻融进行了探测。同时利用已经开发的基于大数据平台的冻融产品生产模块,国际上首次生产了南极冰盖和格陵兰冰盖冻融产品,通过自动气象站温度数据研制,冰盖冻融探测精度达到90%。目前,数据产品获取时间主要为南北极的夏季,其中南极冰盖产品为1、2、3、10、11、12月和格陵兰的产品为5、6、7、8、9、10月。
张露
本数据集来源于论文: Yao, T., Thompson, L., & Yang, W. (2012). Different glacier status with atmospheric circulations in tibetan plateau and surroundings. Nature Climate Change, 1580, 1-5.,数据整理自论文内Supplementary information中的表格数据。 此论文通过对82条冰川退缩、7090条冰川面积减少和15条冰川质量平衡变化的调查,总结了近30年来的冰川状况。 数据集包含8个数据表,数据表名称和内容分别为: Data list:数据列表; t1:Distribution of Glaciers in the TP and surroundings(青藏高原及周边地区冰川分布面积); t2:Data and method for analyzing glacial area reduction in each basin(分析各流域冰川面积减少的数据和方法列表); t3:Glacial area reduction during the past three decades from remote sensing images in the TP and surroundings(基于遥感影像得出的青藏高原及周边地区过去30年中冰川面积减少情况); t4:Glacial length fluctuationin the TP and surroundings in the past three decades(青藏高原及周边地区过去30年中冰川长度波动数据); t5:Detailed information on the glaciers for recent mass balance measurement in the TP and surroundings(青藏高原及周边地区近年来冰川质量平衡测量方法的详细信息); t6:Recent annual mass balances in different regions in the TP(青藏高原不同区域近年来每年质量平衡数据); t7:Mass balance of Long-time series for the Qiyi, Xiaodongkemadi and Kangwure Glaciers in the TP(青藏高原七一冰川,小冬克玛底冰川和抗物热冰川质量平衡长时间序列数据)。 数据详细信息参见附件:Supplementary information.pdf,Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings.pdf。
姚檀栋
本数据是通过建立长江黄河源WEB-DHM分布式水文模型,以气温、降水、气压等作为输入数据,以GAME-TIBET数据作为验证数据,模拟输出的5km逐月水文数据集,包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。数据是基于WEB-DHM分布式水文模型,以气温、降水、气温等(源自itp-forcing和CMA)为输入数据,以GLASS、MODIA、AVHRR为植被数据,SOILGRID及FAO为土壤参数建立起的模型,并通过对径流、土壤温湿度的率定与验证获得的1998-2017年长江黄河源5公里逐月格网径流与蒸发。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。
王磊
在众多反映气候环境变化的指标中,冰芯稳定同位素指标是冰芯记录研究中必不可少的参数,是恢复过去气候变化最可靠的手段和最有效的途径之一。冰芯积累量是冰川上降水量的直接记录,而且高分辨率冰芯记录保证了降水记录的连续性。因此,冰芯记录提供了一种恢复降水量变化的有效手段。从青藏高原钻取的冰芯同位素和积累量可用来重建温度和降水变化,是很好的气候环境记录。本数据集提供了青藏高原冰芯同位素和积累量数据,为研究青藏高原的气候变化提供数据支撑。
徐柏青
1)数据内容:数据包括老虎沟12号冰川2014-2018年年物质平衡;2)数据来源及处理方法:数据源于老虎沟12号冰川海拔每隔100m的花杆观测,观测从海拔5300-5100m,每隔海拔带有三根物质平衡花杆,每年5月及9月各观测一次,采用面积平均法计算整个冰川面物质平衡;3)数据质量描述:数据均为人工实地观测,且操作方法严格按照冰川学方法,具有高的可靠性;4)数据应用成果及前景,该数据已被多次用于冰川模拟的验证以及模型参数的率定,对大尺度冰川模拟的参数率定和验证具有很好的利用价值。
刘宇硕
青藏高原作为亚洲“水塔”为亚洲主要河流提供水资源。由生物质和化石燃料燃烧排放的黑碳(Black carbon,BC)气溶胶对辐射具有极强的吸收作用,进而对地球系统的能量收支和分布具有重要的影响,是气候环境变化不可忽视的影响因子。青藏高原周边地区排放的黑碳气溶胶经大气环流可被传输至高原内部,并沉降到雪冰表面,对降水和冰川物质平衡产生重要影响。在青藏高原通过钻取冰芯样品、采集表雪样品,测量其中的黑碳含量,恢复历史记录和空间分布,为对评估黑碳对青藏高原的气候环境影响和大气污染物的跨境传输提供数据基础。
徐柏青
该数据集包含昆莎冰川末端观测点的气温、降水、相对湿度、风速、风向等日值。 观测时间从2015年10月3日至2017年9月19日。利用自动气象站(Onset公司),每2小时记录一条数据。 原始数据经过质量控制后形成连续时间序列。通过计算得到每日均值指标数据。满足国家气象局和世界气象组织(WMO)对气象观测原始数据的精度。质量控制包括剔除曳点数据和传感器出现故障造成的系统误差。 数据以excel文件存储。
张寅生
青藏高原冰芯-积雪黑碳含量数据集包括5个表:1 Xu et al. 2006 AG,2 Xu et al. 2009 PNAS_Conc,3 Xu et al. 2009 PNAS_flux,4 Xu et al. 2012 ERL,5 Wang et al. 2015 ACP。 数据采集地点包括煤矿冰川、冬克玛底、枪勇、抗物热、纳木那尼、慕士塔格、绒布、唐古拉山、宁金岗桑、左丘普、天山乌鲁木齐河源1号等冰川,采集地点经纬度,高程等信息在数据中均有标注。 数据主要指标为:地点、时间、有机碳(organic carbon,OC)、元素碳(elemental carbon,EC)、黑碳(black carbon,BC)含量和通量。 地点:经纬度 时间:年份或日期 OC:有机碳 EC:元素碳 BC:黑碳 Conc.:含量,单位:ng g-1 Flux:通量,单位:mg m-2a-1 数据来自课题: ①国家重点基础研究发展计划(973计划):全球变化敏感因子的时空特性与遥感模式化;负责人:徐柏青单位:中国科学院青藏高原研究所资助者:科技部 ②国家重点基础研究项目:青藏高原形成演化对全球变化的响应与适应对策;负责人:姚檀栋单位:中国科学院青藏高原研究所资助者:科技部 ③国家自然科学基金面上项目:青藏高原雪冰中高分辨率碳黑记录研究;负责人:徐柏青单位:中国科学院青藏高原研究所资助者:国家自然科学基金委 ④国家自然科学基金面上项目:青藏高原冰芯包裹气体中气候环境信息的提取;负责人:徐柏青单位:中国科学院青藏高原研究所资助者:国家自然科学基金委 ⑤国家自然科学基金杰出青年基金项目:青藏高原雪冰-大气化学与环境变化;负责人:徐柏青单位:中国科学院青藏高原研究所资助者:国家自然科学基金委 ⑥国家自然科学基金青年基金项目:藏东南冰芯近百年来南亚人类活动气溶胶排放与燃烧得变化研究;负责人:王茉单位:中国科学院青藏高原研究所资助者:国家自然科学基金委 观测方法:两步加热法、热/光学碳分析方法和单颗粒黑碳气溶胶光度计。
徐柏青
将冰湖划分为冰面湖、与冰川末端相连和非相连湖泊等三种类型。在分类的基础上,研究第三极地区各流域冰湖的数量与面积、不同大小面积变化幅度、与冰川距离远近、有冰川融水径流补给与无冰川融水径流补给冰湖面积的变化差异以及冰湖面积随海拔梯度变化特征等内容。 数据源:Landsat TM/ETM+ 1990,2000,2010。 数据通过目视解译,包括面积大于0.003平方公里的冰湖数据,结合原始影像与Google Earth检查编辑。 数据应用于第三极地区冰湖变化与冰湖溃决洪水( GLOF) 评估。 数据类型:矢量。 投影坐标系:Albers Conical Equal Area。
张国庆
Randolph冰川目录(Randolph Glacier Inventory,RGI)是GLIMS(Global Land Ice Measurements from Space)发布的全球冰川轮廓的完整目录,目前共发布6个版本:2012年2月发布1.0,2012年6月发布2.0,2013年4月发布3.0,2014年12月发布4.0,2015年7月发布5.0,2017年7月发布6.0。本数据集包括6.0,5.0,4.0和3.2(修正版,2013年8月)共四个版本。 数据按照不同地区进行组织,每个地区包括一个shape文件(.shp文件及其相应的.dbf、.prj和.shx等文件),一个测高数据的.csv文件,每条冰川包含一条记录。 数据来源于GLIMS: Global Land Ice Measurements from Space(http://www.glims.org/RGI/) 数据质量检查包括几何、拓扑和属性检查,包括: 1) 所有多边形都使用ArcGIS Repair Geometry工具进行检查; 2) 删除了小于0.01平方公里的冰川; 3) 拓扑使用Does Not Overlap规则进行检查; 4) 属性表利用Fortran子程序和Python脚本进行数据质量检查。
Global Land Ice Measurements from Space(GLIMS)
本数据集为基于Landsat卫星影像获取的喜马拉雅中段波曲流域1976、1991、2000、2010年四期冰川、冰湖的矢量数据。 数据源来自Landsat遥感影像 1976:LM21510411975306AAA05、LM21510401976355AAA04 1991:LT41410401991334XXX02、LT41410411991334XXX02 2000:LE71410402000279SGS00、LE71400412000304SGS00、LE71410402000327EDC00、LE71410412000327EDC00 2010:LT51400412009288KHC00、LT51410402009295KHC00、LT51410412009311KHC00、LT51410402011237KHC00。 从各期遥感影像上人工提取冰川、冰湖边界。 冰川、冰湖边界提取误差估计为0.5个像元。 数据文件: Glacial_1976:1976年冰川矢量数据 Glacial_1991:1991年冰川矢量数据 Glacial_2000:2000年冰川矢量数据 Glacial_2010:2010年冰川矢量数据 Glacial_Lake_1976:1976年冰湖矢量数据 Glacial_Lake_1991:1991年冰湖矢量数据 Glacial_Lake_2000:2000年冰湖矢量数据 Glacial_Lake_2010:2010年冰湖矢量数据 冰湖矢量数据字段包括: 编号、名字、经纬度、海拔、面积、朝向、冰湖类型、长度、宽度、与冰川的距离
王伟财
本数据集是2013年青藏高原冰川数据,使用了148景Landsat8 OLI卫星多光谱遥感数据,结合65景HJ1A/1B遥感数据,时间主要从2012年至2014年,86%来源于2013年,78%Landsat8 OLI数据成像于冬季,而HJ1A/1B数据100%成像于冬季。冰川数据是青藏高原净冰川覆盖范围,不包括表碛物覆盖部分。数据格式是TIFF,可以为青藏高原冰川变化、冰川水文研究提供基础数据支持。 数据内容:冰川编号FID_smglac,基于Albers等积圆锥投影计算的冰川面积area_km2,所在流域在我国冰川编目中冰川流域的二级编码code, 所在流域在我国冰川编目中冰川流域一级编码First_code,所在流域中文名称name,所在流域英文名称Ename,冰川斑块周长Peremeter(km),斑块中心点X坐标(decimal degree), 斑块中心点Y坐标(decimal degree)。 数据的投影方式:Albers等积圆锥投影。 格网单元:30m 数据加工方法:基于148景Landsat8 OLI卫星多光谱遥感数据,校正、镶嵌为假彩色合成影像(RGB:654),采用人工目视解译方法,参考波段比值法结果,结合SRTM DEM V4.1数据与Google Earth和HJ1A/1B卫星同一年不同季节的影像,剔除了山体阴影、季节性积雪的影响,参考我国第一期和第二期冰川编目数据,剔除了非冰川区的陡崖、裸露基岩等,综合提取净冰川专题矢量数据,不包括冰川末端位置不清的表碛物覆盖区域,冰川边界数字化精度为半个像元(15m)。通过对比分析,可知基于多数据源、参考多方法结果、综合专家经验知识人-机互动方法提取获得的山地冰川数据更准确。具体数据提取方法详见参考文献: Ye, Q., J.Zong,L.Tian et al. (2017). Glacier changes on the Tibetan Plateau derived from Landsat imagery: mid-1970s – 2000 – 2013. Journal of Glaciology,63(238), 273-87. DOI:10.1017/jog.2016.137 原始遥感资料数据精度:30m。 数据质量控制措施:冰川边界数字化精度控制在半个像元之内(15m)。 加工后数据精度:TPG2013总体数据误差在3.9%。 项目来源:中国科学院战略性先导科技专项(A类)(XDA19070302), 第二次青藏高原综合科学考察研究资助(2019QZKK0202),中国科学院“十三五”信息化建设专项资助(XXH13505-06),国家自然科学基金项目(41530748, 91747201),科技基础性工作专项项目(2013FY111400)。
叶庆华
Sentinel-1A/B卫星使用近极地太阳同步轨道,轨道高度693 km,轨道倾角98.18°,轨道周期99 min,搭载了C波段合成孔径雷达(SAR),设计使用寿命为7年(预期12年)Sentinel-l 具有多种成像方式,可实现单极化、双极化等不同的极化方式。Sentinel-1A SAR共有4种工作模式:条带模式(Strip Map Mode,SM)、超宽幅模式 (Extra Wide Swath,EW)、宽幅干涉模式 (Interferometric Wide Swath,IW) 和波模式 (Wave Mode,WV)。A星于2014年4月成功发射,同一区域重访周期为12天,B星2016年4月成功在轨运行,目前重返周期达到3-6天,双星运行以后,南极地区S1数据获取频率大幅度增加。 本数据集为南极冰盖和格陵兰冰盖地区哨兵一号SAR数据。 该数据波段为C波段超宽幅地距多视数据,分辨率为20m*40m, 时间分辨率和往返周期有关,为12天,幅宽为400km,噪声水平为-25dB,辐射测量精度1.0dB。 本数据每年覆盖时间为:南极10月到来年3月,格陵兰4月到9月;覆盖范围南极冰盖冰架地区和格陵兰冰盖。
张露
本数据集是1976年青藏高原冰川数据,使用了205景Landsat MSS/TM卫星多光谱遥感数据,其中189景(覆盖青藏高原研究区92%)在1972-79年,而116景为1976/77年。但藏东南地区由于云、雪的影响,高质量MSS数据不能获得,因此,藏东南部分区域通过逐年筛选,使用了所能获得最早的高质量Landsat TM数据,包括14景1980s(1981,1986-89,覆盖青藏高原研究区6.5%)和2景1994年数据(覆盖青藏高原研究区1.5%)。所用遥感数据,77%为冬季数据;61%为1976/1977年Landsat MSS/TM影像数据,因此,1976年为本数据集代表年份。本数据集冰川数据是青藏高原净冰川覆盖范围,不包括表碛覆盖部分。数据格式是TIFF,可以为青藏高原冰川变化、冰川水文研究提供基础数据支持。 数据内容:冰川编号FID_smglac,基于Albers等积圆锥投影计算的冰川面积area_km2,所在流域在我国冰川编目中冰川流域的二级编码code, 所在流域在我国冰川编目中冰川流域一级编码First_code,所在流域中文名称name,所在流域英文名称Ename,冰川斑块周长Peremeter(km),斑块中心点X坐标(decimal degree), 斑块中心点Y坐标(decimal degree)。 数据的投影方式:Albers等积圆锥投影。 格网单元:30m 数据加工方法:基于205/16景Landsat MSS/TM卫星数据,校正、镶嵌为假彩色合成影像(MSS, RGB:321;TM, RGB:543),采用人工目视解译方法,参考不同波段比值法结果,结合SRTM DEM V4.1数据与Google Earth 同一年不同季节的影像,剔除了山体阴影、季节性积雪的影响,参考我国第一期和第二期冰川编目数据,剔除了非冰川区陡崖、裸露基岩等,综合提取净冰川专题矢量数据,不包括冰川末端位置不清的表碛物覆盖区域,冰川边界数字化精度为半个像元(30m)。通过对比分析,可知基于多数据源、参考多方法结果、综合专家经验知识人-机互动方法获得的数据更准确。具体数据提取方法详见参考文献: Ye, Q., J.Zong,L.Tian et al. (2017). Glacier changes on the Tibetan Plateau derived from Landsat imagery: mid-1970s – 2000 – 2013. Journal of Glaciology,63(238), 273-87. DOI:10.1017/jog.2016.137 原始遥感资料数据精度:60m。 数据质量控制措施:冰川边界数字化精度控制在半个像元之内(30m)。 加工后数据精度:通过分析典型区数据,最大误差为4%。TPG1976总体数据误差为6.4%。 项目来源:中国科学院战略性先导科技专项(A类)(XDA19070302),第二次青藏高原综合科学考察研究资助(2019QZKK0202),中国科学院“十三五”信息化建设专项资助(XXH13505-06), 国家自然科学基金项目(41530748, 91747201)。
叶庆华, 吴玉伟
随着SAR干涉测量技术的不断进步,使得高精度获取冰川区的多时相DEM成为了可能。特别是,2000年美国国家航空航天局(NASA)主导的航天飞机雷达制图计划(SRTM)提供了覆盖全球56ºS - 60ºN范围的DEM资料;德国宇航局(DLR)的TanDEM-X双站SAR干涉测量系统能够提供全球范围高分辨率、高精度DEM。这些高质量、大覆盖范围的SAR干涉测量数据,以及发布的DEM数据产品,为利用多时相DEM探测冰川厚度变化提供了宝贵的基础资料。 青藏高原典型冰川厚度变化数据的时间段为2000-2013年,覆盖范围为普若岗日和祁连山西部地区,空间分辨率30米。利用TanDEM-X双站InSAR数据和C波段 SRTM DEM,首先采用差分干涉测量方法高精度的生成TanDEM-X DEM,然后在进行DEM精确配准的基础上,通过对比不同时期获取的DEM数据,估算冰川厚度变化。该数据集采用Geotiff格式,每个典型冰川冰厚变化存储为一个文件夹。 数据的详细情况见青藏高原典型冰川厚度变化数据集-数据说明。
江利明
本数据集是2001年青藏高原冰川数据,使用了150景Landsat7 TM/ETM+卫星多光谱遥感数据,时间主要从1999年至2002年,72%来源于2000/2001年,71%遥感数据成像于冬季。冰川数据是青藏高原净冰川覆盖范围,不包括表碛物覆盖部分。数据格式是TIFF,可以为青藏高原冰川变化、冰川水文研究提供基础数据支持。 数据内容:冰川编号FID_smglac,基于Albers等积圆锥投影计算的冰川面积area_km2,所在流域在我国冰川编目中冰川流域的二级编码code, 所在流域在我国冰川编目中冰川流域一级编码First_code,所在流域中文名称name,所在流域英文名称Ename,冰川斑块周长Peremeter(km),斑块中心点X坐标(decimal degree), 斑块中心点Y坐标(decimal degree)。 格网单元:30m 数据的投影方式:Albers等积圆锥投影。 数据加工方法:基于150景Landsat7 TM(ETM+)卫星数据,校正、镶嵌为假彩色合成影像(TM/ETM+, RGB:543),采用人工目视解译方法,参考波段比值法结果,结合SRTM DEM V4.1数据与Google Earth 同一年不同季节的影像,剔除了山体阴影、季节性积雪的影响,参考我国第一期和第二期冰川编目数据,剔除了非冰川区的陡崖、裸露基岩等,综合提取净冰川专题矢量数据,不包括冰川末端位置不清的表碛物覆盖区域,冰川边界数字化精度为半个像元(15m)。通过对比分析,可知基于多数据源、参考多方法结果、综合专家经验知识人-机互动方法提取获得的山地冰川矢量数据更准确。具体数据提取方法详见参考文献: Ye, Q., J.Zong,L.Tian et al. (2017). Glacier changes on the Tibetan Plateau derived from Landsat imagery: mid-1970s – 2000 – 2013. Journal of Glaciology,63(238), 273-87. DOI:10.1017/jog.2016.137 原始遥感资料数据精度:30m。 数据质量控制措施:冰川边界数字化精度控制在半个像元之内(15m)。 加工后数据精度:TPG2001总体数据误差在3.8%。 项目来源:中国科学院战略性先导科技专项(A类)(XDA19070302),第二次青藏高原综合科学考察研究资助(2019QZKK0202),中国科学院“十三五”信息化建设专项资助(XXH13505-06),国家自然科学基金项目(41530748, 91747201)。
叶庆华, 吴玉伟
青藏高原冰川细菌资源库数据集提供了刘勇勤实验组在2010-2018年间分离的青藏高原7条冰川(珠峰东绒布冰川,天山一号冰川,古里雅冰川,老虎沟冰川,木孜塔格冰川,七一冰川和玉珠峰冰川),向述荣分离的马兰冰川和张新芳分离的普若岗日冰川的细菌16S核糖体RNA基因序列。冰川样品采集后带回北京青藏高原院研究所生态实验室和兰州冰冻圈国家实验室,涂布平板后于不同温度下(4-25摄氏度)培养20天-90天并挑取单菌落纯化。分离的细菌提取DNA后以27F/1492R引物扩增16S核糖体RNA基因片段,并使用Sanger法测序。16S核糖体RNA基因序列通过“Classifier”软件与RDP数据库进行比对,在可靠性大于>80%的情况下鉴定到属一级水平。 本数据包含每条序列的16S核糖体RNA基因片段序列及冰川来源。与以高通量测序为基础的序列相比,本数据的序列长度更长,分类更准确,更好的服务于冰川微生物研究。
计慕侃
监测冰川物质平衡数据是反应冰川对气候变化响应的最直接最可靠的数据。 全球冰川监测物质平衡数据通过对全球可获取物质平衡数据进行收集整理,获取了具有连续观测时间序列(未间断)的76条冰川信息及其连续观测的冰川物质平衡数据,时间分辨率为年,从1950年到2016年。
肖瑶, 上官冬辉
南北极及青藏高原冰川雪和冰里原核微生物分布数据集提供了刘勇勤实验组在2010-2018年间从NCBI数据库收集的细菌16S核糖体RNA基因序列。 NCBI数据库搜索的关键词为Antarctic, Arctic Tibetan, Glacier.。收集的序列通过使用DOTOUR软件计算序列之间相似度,相似度在97%以上的序列聚类为一个OTU,并定义OTU代表序列。OTU代表序列通过“Classifier”软件与RDP数据库进行比对,在可靠性大于>80%的情况下鉴定到属一级水平。获得序列后,通过阅读序列文件中样品信息获得样品的GPS坐标。本数据包含每条序列的16S核糖体RNA基因片段序列,进化分类,及样品GPS坐标。本数据与以高通量测序为基础的序列相比,本数据的序列长度更长,分类更准确,对于比较三极微生物的进化信息,以及研究嗜冷微生物进化的认识有重要意义。
计慕侃
青藏高原典型冰川DEM采用双站InSAR方法制作,数据采集时间为2013年11月21日,覆盖范围为普若岗日和祁连山西部地区,空间分辨率10米,高程精度0.8m的DEM结果,精度可满足国家1∶10000地形制图的要求。冰川DEM采用TanDEM-X双站InSAR数据,采用改进的SAR干涉处理方法,顾及了双站InSAR在成像几何和相位解缠等方面的特点,高分辨率、高精度地生成了上述两个典型冰川的表面DEM。该数据集采用Geotiff格式,每个典型冰川DEM存储为一个文件夹。 数据的详细情况见青藏高原典型冰川DEM数据集-数据说明。
江利明
大多数仪器气候记录的长度相对较短,限制了对气候变化的研究,因此有必要借助代理数据将记录延续到过去。直到20世纪40年代后期,才有了足够质量和空间分辨率的大气数据来确定气候变化的主要模式,如北美太平洋模式和太平洋年代际振荡。全球冰芯除了分布在南北两极以及第三极,阿拉斯加也有山地冰川分布,在该区域获得的冰芯数据,对于揭示北美地区气候,对于揭示低纬度与高纬度北极地区气候变化具有主要的意义。 各变量的物理意义: 第一列:时间;第二列:积累率数据;第三列:氧同位素数据值
杜志恒
由美国发起的格陵兰冰盖计划 (GISP2),提供了一个10万多年的氧同位素详细资料,几乎覆盖了整个冰期-间冰期循环。该数据记录了过去818-1987年氧同位素变化,其中清晰记录小冰期为该过去1000年来最冷的时期。其中1850-1987年呈现出波动增温,其变化与格陵兰获取的GRIP、NGRIP及最新的NEEM冰芯变化一致,反映了雪冰记录在格陵兰冰盖具有很好的一致性。 各变量的物理意义: 第一列:冰芯深度;第二列:氧同位素值;第三列:时间
杜志恒
从公元1000年到现在大气中甲烷的浓度在南北极冰芯呈现显著的上升,本数据来自澳大利亚塔斯马尼亚实验室,对冰芯样品采取湿法提取,通过对所有样品使用相同的测量程序和校准, 获取了高分辨率数据。数据结果与瑞士伯尔尼大学、丹麦哥本哈根大学以及美国俄亥俄州大学等国际著名冰芯温室气体实验室结果一致。 各变量的物理意义: 第一列:时间;第二列:甲烷浓度数值
杜志恒
微波辐射计数据集为SMMR(1978-1987)、SSM/I(1987-2009)和SSMIS(2009-2015)亮温数据,覆盖时间从1978年到2015年,空间分辨率为25 km,南极数据每个文件由316*332的栅格组成,北极冻融数据每个文件由304*448的栅格组成;微波散射计数据集为QScat(2000-2009)和ASCAT(2009-2015)后向散射系数据,覆盖时间从2000年到2015年,空间分辨率为4.45km.南极数据每个文件由1940*1940的栅格组成,北极数据每个文件由810*680的栅格组成。时间分辨率为逐日,覆盖范围为南北极冰盖。
李新武, 梁雷
利用2003-2013年11景的Modis1B数据(NSIDC网站发布的冰架Modis1B数据),采用亚像元互相关方法提取南极Amery冰架表面流速,应用COSI-Corr软件提取冰架流速,获取近十年的年均流速时间序列,由于研究区域内缺乏实地观测,因此利用稳定区域的偏移量值评估冰流结果的精度,冰流误差约为±50m/year。冰流场数据覆盖时间从2003年到2013年,时间分辨率为逐年,覆盖范围为Amery区域,空间分辨率为500m。每年的冰流场数据存放一个Geotiff文件。 数据的详细情况见Amery冰流场-数据说明。
江利明
在全球气候变暖背景下,世界范围内山地冰川消融强烈,以退缩为主,但现有野外观测发现,喀喇昆仑地区大部分冰川保持稳定或前进状态,为“喀喇昆仑异常”。冰川表面流速是研究冰川动力学和物质平衡的重要参数,研究喀喇昆仑中部区域冰川流速时空变化特征对于认识该区域冰川动力学特征及其对气候变化的响应具有重要的意义。 选取1999-2003年获取的四对Landsat 7 ETM+影像(影像获取时间分别为:1999.7.16, 2000.6.16, 2001.7.21, 2002.8.9, 2002.4.19, 2003.3.21),采用全色波段,分辨率为15 m,对每对影像进行精确配准,然后对配准后的两景影像进行互相关计算,获取1999-2003年喀喇昆仑中部区域冰川表面流速。由于研究区域内缺乏流速实地观测数据,因此利用稳定区域的偏移量值评估冰流结果的精度,冰川表面流速误差约为±7 m/year。 冰流场数据覆盖时间从1999年到2003年,时间分辨率为逐年,覆盖范围为喀喇昆仑中部区域,空间分辨率为30 m,每年的冰流场数据存放一个Geotiff文件。 数据的详细情况见喀喇昆仑中部区域冰流场-数据说明。
江利明
南极冰盖高程数据采用雷达高度计数据(Envisat RA-2)和激光雷达数据(ICESat/GLAS)制成。为提高ICESat/GLAS数据的精度,采用了五种不同的质量控制指标对GLAS数据进行处理,滤除了8.36%的不合格数据。这五种质量控制指标分别针对卫星定位误差、大气前向散射、饱和度及云的影响。同时,对Envisat RA-2数据进行干湿对流层纠正、电离层纠正、固体潮汐纠正和极潮纠正。针对两种不同的测高数据,提出了一种基于Envisat RA-2和GLAS数据光斑脚印几何相交的高程相对纠正方法,即通过分析GLAS脚印点与Envisat RA-2数据中心点重叠的点对,建立这些相交点对的高度差(GLAS-RA-2)与表征地形起伏的粗糙度之间的相关关系,对具有稳定相关关系的点对进行Envisat RA-2数据的相对纠正。通过分析南极冰盖不同区域的测高点密度,确定最终DEM的分辨率为1000 m。考虑到南极普里兹湾和内陆地区的差异性,将南极冰盖分为16个区,利用半方差分析确定最佳插值模型和参数,采用克吕金插值方法生成了1000 m分辨率的南极冰盖高程数据。利用两种机载激光雷达数据和我国多次南极科考实测的GPS数据对新的南极DEM进行了验证。结果显示,新的DEM与实测数据的差值范围为3.21—27.84 m,其误差分布与坡度密切关系。
黄华兵
该数据为2005年格陵兰岛地区ENVISAT-1卫星ASAR传感器获取的Wide Swath模式Level 1B级SAR数据,幅宽400km,空间分辨率为75m,绝对定位精度约为200米。 该SAR数据在存储时都是以时间增长为序的方式存储的,这使的下行轨道的图象为左右镜象,而上行轨道的图象为上下镜象。 该数据的命名规则如下例所示: ASA_IMS_1PPIPA 20050402_095556_000000162036_00065_16151_0388.N1 ASA: 产品标识,ASAR传感器 IMS: 数据的接收、处理信息(成像模式,如WS,WSS,IM,...) 1PPIPA:订制的编号 20050402: 数据获取的时间(UTC时间) 095556:地理位置(开始、结束) 000000162036:卫星轨道信息 00065:产品信任数据 16151:产品大小、结构信息 0388 => 校验码
惠凤鸣
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件