Current Browsing: Terrestrial Surface


The investigation data on the ground and underground biomass and distribution characteristics of the desert plant communities (2014)

In the previous project, three different types of desert investigation and observation sites in the lower reaches of Heihe River were set up. Different kinds of desert plants with the same average growth and size as the observation site were selected for the above ground biomass and underground biomass total root survey. The dry weight was the dry weight at 80 ℃, and the root shoot ratio was the dry weight ratio of the underground biomass to the aboveground biomass. Species: Elaeagnus angustifolia, red sand, black fruit wolfberry, bubble thorn, bitter beans, Peganum, Tamarix and so on.

2020-06-01

Vector map of 1:4 million rivers in the upper reaches of the Yellow River (2009)

I. Overview The Yellow River is the second longest river in our country. The problem of the Yellow River's sediment has attracted the attention of people all over the world. Based on the vector map of the 14 million rivers in China as a base map, the upper reaches of the Yellow River basin were cut out. The vector map of the river is a key element for extracting the boundary of the basin by using the topographic map, and it is also a key element for flood evolution and sediment evolution. Ⅱ. Data processing description Using the national vector map of the 14 million rivers as the data source, it is cut out by using the boundary of the upper reaches of the Yellow River. Ⅲ. Data content description The map is stored in ArcGIS, .shp files, including vector diagrams of the main and tributaries from the source area of the Yellow River to Toudaoguai. Ⅳ. Data usage description The vector map of the river is a key element for extracting the boundary of the watershed by using the topographic map, and it is also a key element for flood evolution and sediment evolution.

2020-06-01

Digital soil mapping dataset of sand content in the Heihe River Basin

According to the global soil map. Net standard, the 0-1m soil depth is divided into 5 layers: 0-5cm, 5-15cm, 15-30cm, 30-60cm and 60-100cm. According to the principle of soil landscape model, the spatial distribution data products of soil sand content in different layers are made by using the digital soil mapping method. The American system classification is used as the standard of soil particle classification. The source data of this data set comes from the soil profile data integrated by the major research plan integration project of Heihe River Basin (soil data integration and soil information product generation of Heihe River Basin, 91325301). Scope: Heihe River Basin; Projection: WGS · 1984 · Albers; Spatial resolution: 100M; Data format: TIFF; Dataset content: hh_sand_layer1.tif: 0-5cm soil sand content; hh_sand_layer2.tif: 5-15cm soil sand content; hh_sand_layer3.tif: 15-30cm soil sand content; hh_sand_layer4.tif: 30-60cm soil sand content; hh_sand_layer5.tif: 60-100cm soil sand content;

2020-06-01

Digital soil mapping dataset of silt content in the Heihe River Basin

According to the global soil map. Net standard, the 0-1m soil depth is divided into 5 layers: 0-5cm, 5-15cm, 15-30cm, 30-60cm and 60-100cm. According to the principle of soil landscape model, the spatial distribution data products of soil silt content in different layers are made by using the digital soil mapping method. The American system classification is used as the standard of soil particle classification. The source data of this data set comes from the soil profile data integrated by the major research plan integration project of Heihe River Basin (soil data integration and soil information product generation of Heihe River Basin, 91325301). Scope: Heihe River Basin; Projection: WGS · 1984 · Albers; Spatial resolution: 100M; Data format: TIFF; Dataset content: hh_silt_layer1.tif: 0-5cm soil silt content; hh_silt_layer2.tif: 5-15cm soil silt content; hh_silt_layer3.tif: 15-30cm soil silt content; hh_silt_layer4.tif: 30-60cm soil silt content; hh_silt_layer5.tif:60-100cm soil silt content;

2020-06-01

Digital soil mapping dataset of clay content in the Heihe River Basin

According to the global soil map. Net standard, the 0-1m soil depth is divided into 5 layers: 0-5cm, 5-15cm, 15-30cm, 30-60cm and 60-100cm. According to the principle of soil landscape model, the spatial distribution data products of soil clay content in different layers are made by using the digital soil mapping method. The American system classification is used as the standard of soil particle classification. The source data of this data set comes from the soil profile data integrated by the major research plan integration project of Heihe River Basin (soil data integration and soil information product generation of Heihe River Basin, 91325301). Scope: Heihe River Basin; Projection: WGS · 1984 · Albers; Spatial resolution: 100M; Data format: TIFF; Dataset content: hh_clay_layer1.tif: 0-5cm soil clay content; hh_clay_layer2.tif: 5-15cm soil clay content; hh_clay_layer3.tif: 15-30cm soil clay content; hh_clay_layer4.tif: 30-60cm soil clay content; hh_clay_layer5.tif: 60-100cm soil clay content;

2020-06-01

Arctic elevation data

Digital Elevation Model (DEM) is a kind of solid ground Model that represents the ground Elevation in the form of a set of ordered numerical arrays. The arctic region within 66 ° 34 'refers to the arctic regions and parts of Greenland in the arctic.Elevation data include arctic digital dem and hillshade data in tif format.Range of 66 ° ~ 90 ° N N, the spatial resolution of 0.008 ° x 0.008 °. The data is downloaded from NASA global elevation data DEM describes ground elevation information, which is widely used in surveying and mapping, hydrology, meteorology, geomorphology, geology, soil, engineering construction, communication, military and other fields of national economy and national defense as well as humanities and natural sciences.

2020-05-28

HiWATER:Landsat ETM+ dataset (2012)

This dataset includes five scenes, covering the artificial oasis eco-hydrology experimental area of the Heihe River Basin, which were acquired on (yy-mm-dd) 2012-04-05, 2012-04-21, 2012-05-07, 2012-06-24, 2012-07-10. The data were all acquired around 11:50 (BJT) with data product of Level 2. Landsat ETM+ dataset was downloaded from http://glovis.usgs.gov/.

2020-05-28

HiWATER: Radarsat-2 dataset on July. 06, 2012

This dataset includes one scene acquired on (yy-mm-dd hh:mm, BJT) 2012-07-06 06:30, covering the artificial oasis eco-hydrology experimental area of the Heihe River Basin. This datum was acquired at Stripmap-Quad mode with product level of SLC, and this image includes VV, VH, HH and HV polarization with a spatial resolution of 8 m. Radarsat-2 dataset was acquired from the Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences (Courtesy: Dr. Chen Quan).

2020-05-28

Soil bulk density of representative samples in the Heihe River Basin (2012-2013)

The aerosol optical thickness data of the Arctic Alaska station is based on the observation data products of the atmospheric radiation observation plan of the U.S. Department of energy at the Arctic Alaska station. The data coverage time is updated from 2017 to 2019, with the time resolution of hour by hour. The coverage site is the northern Alaska station, with the longitude and latitude coordinates of (71 ° 19 ′ 22.8 ″ n, 156 ° 36 ′ 32.4 ″ w). The source of the observed data is retrieved from the radiation data observed by mfrsr instrument. The characteristic variable is aerosol optical thickness, and the error range of the observed inversion is about 15%. The data format is NC format. The aerosol optical thickness data of Qomolangma station and Namuco station in the Qinghai Tibet Plateau is based on the observation data products of Qomolangma station and Namuco station from the atmospheric radiation view of the Institute of Qinghai Tibet Plateau of the Chinese Academy of Sciences. The data coverage time is from 2017 to 2019, the time resolution is hour by hour, the coverage sites are Qomolangma station and Namuco station, the longitude and latitude coordinates are (Qomolangma station: 28.365n, 86.948e, Namuco station Mucuo station: 30.7725n, 90.9626e). The source of the observed data is retrieved from the radiation data observed by mfrsr instrument. The characteristic variable is aerosol optical thickness, and the error range of the observed inversion is about 15%. The data format is TXT.

2020-05-25

Soil bulk density of representative samples in the Heihe River Basin

The data set includes soil bulk density data of representative soil samples collected from July 2012 to August 2013 in the Heihe River Basin. The first soil survey was conducted in 2012. After the representativeness evaluation of collected samples, we conducted an additional sampling in 2013. These samples are representative enough to represent the soil variation in the Heihe River Basin, of which the soil variation in each landscape could be accounted for. The sampling depths in field refer to the sampling specification of Chinese Soil Taxonomy, in which soil samples were taken from genetic soil horizons.

2020-05-25