Current Browsing: Terrestrial Surface


Dataset of growing season average NDVI changing trends in Three River Source National Park (2000-2018)

Based on the average NDVI (spatial resolution 250m) of MODIS during the growing season from 2000 to 2018, the trend of NDVI was calculated by using Mann-Kendall trend detection method. Three parks of Three River Source National Park are calculated (CJYQ: Yangtze River Park; HHYYQ: Yellow River Park; LCJYQ: Lancang River Park). CJYQ_NDVI_trend_2000_2018_ok.tif: Changjiang Source Park NDVI trend. CJYQ_NDVI_trend_2000_2018_ok_significant.tif: Changjiang Source Park NDVI change trend, excluding the area that is not significant (p > 0.05). CJYYQ_gs_avg_NDVI_2000.tif: The average NDVI of the Yangtze River Source Park in 2000 growing season. Unit NDVI changes every year.

2021-11-02

Surface DEM for typical glaciers on the Tibetan Plateau (Version 1.0) (2003)

The DEMs of the typical glaciers on the Tibetan Plateau were provided by the bistatic InSAR method. The data were collected on November 21, 2013. It covered Puruogangri and west Qilian Mountains with a spatial resolution of 10 meters, and an elevation accuracy of 0.8 m which met the requirements of national 1:10 000 topographic mapping. Considering the characteristics of the bistatic InSAR in terms of imaging geometry and phase unwrapping, based on the TanDEM-X bistatic InSAR data, and adopting the improved SAR interference processing method, the surface DEMs of the two typical glaciers above were generated with high resolution and precision. The data set was in GeoTIFF format, and each typical glacial DEM was stored in a folder. For details of the data, please refer to the Surface DEMs for typical glaciers on the Tibetan Plateau - Data Description.

2021-10-26

Dataset of plant distribution investigation in Three-River-Source National Park (2008-2017)

This data set is the plant collection and distribution site information of Three-River-Source National Park investigated by Northwest Plateau Biology Institute of Chinese Academy of Sciences. The data set covers the period from 2008 to 2017, and the survey covers theThree-River-Source National Park. The survey contents include information such as collection date, number, family, genus, species, survey date, collection place, collector, longitude, latitude, altitude, habitat, appraiser, etc. Three parks of the national park were investigated respectively. 88 species of vegetation belonging to 56 genera and 24 families were investigated in the Yangtze River Source Park, with 116 records in total. Vegetation of 110 species in 64 genera and 26 families was investigated in the Yellow River Source Park, with 159 records in total. The vegetation of 30 species in 22 genera and 12 families was investigated in Lancang River Source Park, with a total of 33 records.

2021-10-13

HiWATER: QuickBird dataset on July. 25, 2012

This dataset includes one scene acquired on (yy-mm-dd) 2012-07-25, covering the natural oasis eco-hydrology experimental area in the lower reaches of the Heihe River Basin. This datum contains panchromatic and multi-spectral bands, with spatial resolution of 0.6 m and 2.4 m, respectively. The data product level of this image is Level 2A. QuickBird dataset was acquired through purchase.

2021-07-27

HiWATER: Dataset of vegetation FPAR in the middle of Heihe River Basin form May to July, 2015

This dataset is the FPAR observation in the artificial oasis experimental region of the middle stream of the Heihe River Basin. The observation period is from 24 May to 19 July, 2012 (UTC+8). Measurement instruments: AccuPAR (Beijing Normal University) Measurement positions: Core Experimental Area of Flux Observation Matrix 18 corn samples, 1 orchard sample, 1 artificial white poplar sample Measurement methods: For corn, to measure the incoming PAR on the canopy, transmission PAR under the canopy, reflected PAR on the canopy, reflected PAR under the canopy. For orchard and white poplar forest, to measure the incoming PAR outside of the canopy, transmission PAR under the canopy. Corresponding data: Land cover, plant height, crop rows identification

2021-07-26

Permafrost soil bacteria in Barrow Peninsula, Arctic (2015)

This data includes the soil microbial composition data in permafrost of different ages in Barrow area of the Arctic. It can be used to explore the response of soil microorganisms to the thawing in permafrost of different ages. This data is generated by high through-put sequencing using the earth microbiome project primers are 515f – 806r. The region amplified is the V4 hypervariable region, and the sequencing platform is Illumina hiseq PE250; This data is used in the articles published in cryosphere, Permafrost thawing exhibits a greater influence on bacterial richness and community structure than permafrost age in Arctic permafrost soils. The Cryosphere, 2020, 14, 3907–3916, https://doi.org/10.5194/tc-14-3907-2020https://doi.org/10.5194/tc-14-3907-2020 . This data can also be used for the comparative analysis of soil microorganisms across the three poles.

2021-04-09

WATER: Dataset of the automatic meteorological observations at the Pailugou grassland station in the Dayekou watershed (2008-2009)

The dataset of the automatic meteorological observations (2008-2009) was obtained at the Pailugou grassland station (E100°17'/N38°34', 2731m) in the Dayekou watershed, Zhangye city, Gansu province. The items included multilayer (1.5m and 3m) of the air temperature and air humidity, the wind speed (2.2m and 3.7m) and direction, the air pressure, precipitation, the global radiation, the net radiation, co2 (2.8m and 3.5m), the multilayer soil temperature (10cm, 20cm, 40cm, 60cm, 120cm and 160cm), soil moisture (10cm, 20cm, 40cm, 60cm, 120cm and 160cm), and soil heat flux (5cm, 10cm and 15cm). For more details, please refer to Readme file.

2021-03-10

Data content: precipitation data of the Aral Sea basin from 2015 to 2018. Data sources and processing methods: from the new generation of global precipitation measurement (GPM) of NASA (version 06, global precipitation observation program), the daily rainfall can be obtained by adding the three-hour rainfall data, and then the eight day rainfall can be obtained. Data quality: the spatial resolution is 0.1 ° x 0.1 ° and the temporal resolution is 8 days. The value of each pixel is the sum of rainfall in 8 days. Data application results: under the background of climate change, it can be used to analyze the correlation between meteorological elements and vegetation characteristics.

2021-02-23

Aboveground biomass data set of temperate grassland in northern China (1993-2019)

Based on a large number of measured aboveground biomass data of grassland, the temperate grassland types were divided according to the vegetation type map of China in 1980s Based on the Landsat remote sensing data of engine platform, the random forest model of grassland aboveground biomass and remote sensing data was constructed for different grassland types. On the basis of reliable verification, the annual aboveground biomass of grassland from 1993 to 2019 was estimated, and the annual spatial data set of aboveground biomass of temperate grassland in Northern China from 1993 to 2019 was formed. Aboveground biomass is defined as the total amount of organic matter of vegetation living above the ground in unit area. The original grid value has been multiplied by a factor of 100, unit: 0.01 g / m2 (g / m2). This data set can provide a scientific basis for the dynamic monitoring and evaluation of temperate grassland resources and ecological environment in northern China.

2021-01-27

Oxygen content in the atmosphere of the Tibetan Plateau

Based on the meteorological data of 105 meteorological stations in and around the Qinghai Tibet Plateau from 1980 to 2019, the National Meteorological Science Data Center of China Meteorological Administration (CMA) was established. By calculating the oxygen content, it is found that there is a significant linear correlation between oxygen content and altitude, y = - 0.0263x + 283.8, R2 = 0.9819. Therefore, the oxygen content distribution map can be calculated based on DEM data grid. Due to the limitation of the natural environment in the Qinghai Tibet Plateau, there are few related fixed-point observation institutions. This data can reflect the distribution of oxygen content in the Qinghai Tibet Plateau to a certain extent, and has certain reference significance for the research of human living environment in the Qinghai Tibet Plateau.

2021-01-25