Current Browsing: Terrestrial Surface


HiWATER: 0.5m WorldView-2DOM data production in Dayekou watershed on May, 2012

Trough the select tasking, we obtained the WorldView-2 stereo image data in Dayekou Watershed production in mid-May 2012. In the same year from July to August, 27 GPS ground control points (GCP) and checkpoints were measured based on the watershed differential GPS control network. Based on the full-field GCPs, the rational polynomial coefficients (RPC) files of WorldView-2 images were corrected in the digital photogrammetry software system. In the stereo model, 60 high-precision tie points evenly distributed were got through image matching technology, and the 1-m and 2-m resolution digital elevation model (DEM) were rapid extracted. Based on collinearity equations, images at nadir were corrected to adjust relief displacements and geometric errors, and the 0.5-m resolution digital orthorectified images DOM were obtained with the principle of digital differential rectification in Dayekou Basin.

2019-09-15

HiWATER: Dataset of intensive runoff observations of No.3 in the midstream of the Heihe River Basin of the MUlti-Scale Observation EXperiment on Evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)

The No. 3 hydrological section is located at Railway Heihe River Bridge (39°02′33.08″ N, 100° 25′49.42″ E, 1443 m a.s.l.) in the middle reaches of the Heihe River Basin, Zhangye, Gansu Province. The dataset contains observations from the No.3 hydrological section from 14 June, 2012, to 24 November, 2012. The width of this section is 50 meters. The water level was measured using SR50 ultrasonic range and the discharge was measured using cross-section reconnaissance by the StreamPro ADCP. The dataset includes the following sections: Water level (recorded every 30 minutes) and Discharge. The data processing and quality control steps were as follows: 1) The water level data which collected from the hydrological station were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. 2) Data out the normal range records were rejected. 3) Unphysical data were rejected. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), He et al. (2016) (for data processing) in the Citation section.

2019-09-15

HiWATER: Dataset of intensive runoff observations of No.8 in the midstream of the Heihe River Basin of the MUlti-Scale Observation EXperiment on Evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)

The No. 8 hydrological section is located at Gaotai Heihe River Bridge (39 ° 23′22 .93 ″ N, 99 ° 49′37 .29″ E, 1347 m a.s.l.) in the middle reaches of the Heihe River Basin, Zhangye, Gansu Province. The dataset contains observations from the No.8 hydrological section from 17 June, 2012, to 24 November, 2012. The width of this section is 130 meters. The water level was measured using SR50 ultrasonic range and the discharge was measured using cross-section reconnaissance by the StreamPro ADCP. The dataset includes the following sections: Water level (recorded every 30 minutes) and Discharge. The data processing and quality control steps were as follows: 1) The water level data which collected from the hydrological station were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. 2) Data out the normal range records were rejected. 3) Unphysical data were rejected. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), He et al. (2016) (for data processing) in the Citation section.

2019-09-15

HiWATER: Dataset of intensive runoff observations in the midstream of the Heihe River Basin of the MUlti-Scale Observation EXperiment on Evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)

The site No. 1 EC towers were used for the intercomparison field in the Yingke irrigation district (1552.75 m, 38°59′51.71″ N, 100°24′38.76″ E). The land surface is homogeneous and dominated by vegetables in the middle reaches of the Heihe River Basin. The precipitation comparison dataset was collected between 12 June, 2012, and 22 November, 2012. The dataset includes data for five different rain gauge types, i.e., pit gauge, Chinese standard manual precipitation gauge, siphon rain gauge, tipping bucket gauge, and weighting gauge. The mountain heights for these gauges were 0.0, 0.7, 1.2, 1.5, and 1.5 m, respectively. The data were recorded every 1 hour, 1 day, 10 minutes, 10 minutes, and 10 minutes, respectively. The main objective of the data collection was to perform an intercomparison of in situ rainfall measurements. The data processing and quality control steps were as follows: 1) The water level data which collected from the hydrological station were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. 2) Data out the normal range records were rejected. 3) Unphysical data were rejected. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), He et al. (2016) (for data processing) in the Citation section.

2019-09-15

Digital elevation model of China (1KM)

DEM is the English abbreviation of Digital Elevation Model, which is the important original data of watershed topography and feature recognition.DEM is based on the principle that the watershed is divided into cells of m rows and n columns, the average elevation of each quadrilateral is calculated, and then the elevation is stored in a two-dimensional matrix.Since DEM data can reflect local topographic features with a certain resolution, a large amount of surface morphology information can be extracted through DEM, which includes slope, slope direction and relationship between cells of watershed grid cells, etc..At the same time, the surface flow path, river network and watershed boundary can be determined according to certain algorithm.Therefore, to extract watershed features from DEM, a good watershed structure pattern is the premise and key of the design algorithm. Elevation data map 1km data formed according to 1:250,000 contour lines and elevation points in China, including DEM, hillshade, Slope and Aspect maps. Data set projection: Two projection methods: Equal Area projection Albers Conical Equal Area (105, 25, 47) Geodetic coordinates WGS84 coordinate system

2019-09-15

HiWATER: Airborne LiDAR-DSM data production in the sample strip in the upstream of the Heihe River Basin

On 25 August 2012, a Leica ALS70 airborne laser scanner boarded on the Y-12 aircraft was used to obtain LiDAR DSM point cloud data. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 5200 m with the point cloud density 1 point per square meter. Aerial LiDAR-DSM was obtained through parameter calibration, automatic classification of point cloud density and manual editing.

2019-09-15

HiWATER: Dataset of the spectral reflectance in the middle of Heihe River Basin

This dataset contains the spectra of white cloth and black cloth obtained in the simultaneous time during the airborn remote sensing which supports the airboren data preprocessing as CASI, SASI and TASI , and the spetra of the typical targets in the middle reaches of the Heihe River Basin. Instruments: SVC-HR1024 from IRSA, ASD Field Spec 3 from CEODE, Reference board Measurement method: the spectra radiance of the targets are vertically measured by the SVC or ASD; before and after the target, the spectra radiance of the reference board is measured as the reference. This dataset contains the spectra recorded by the SVC-HR1024 ( in the format of .sig which can be opened by the SVC-HR1024 software or by the notepad ) and the ASD (in the format of .asd), the observation log (in the format of word or excel), and the photos of the measured targets. Observation time: 15-6-2012, the spectra of typical targets in the EC matrix using SVC 16-6-2012, the spectra of typical targets in the wetland by SVC 29-6-2012, the spectra of typical vegetation and soil in Daman site and Gobi site by ASD 29-6-2012, the spectra of white cloth and black cloth by ASD which is simultaneous with the airborne CASI data 30-6-2012, the spectra of vegetation and soil in the desert by ASD 5-7-2012, the spectra of white cloth and black cloth by ASD which is simultaneous with the airborne CASI data 7-7-2012, the spectra of corn in the Daman site for the research of daily speral variation. 8-7-2012, the spectra of white cloth and black cloth by ASD which is simultaneous with the airborne CASI data 8-7-2012, the spectra of corn in the Daman site by ASD for the research of daily speral variation 9-7-2012, the spectra of corn in the Daman site by ASD for the research of daily speral variation 10-7-2012, the spectra of corn in the Daman site by ASD for the research of daily speral variation 11-7-2012, the spectra of corn in the Daman site by ASD for the research of daily speral variation. The time used in this dataset is in UTC+8 Time.

2019-09-15

HiWATER: Land cover map in the core experimental area of flux observation matrix

The dataset contains vegetation type in the middle reaches of the Heihe River Basin, which was used to validate products from remote sensing. It was generated from investigating the land cover strips of CASI during 2012. Instruments: High-precision handheld GPS (2-3 m) and digital camera were used as main tools in the survey. Measurement method: Hierarchical classification is applied based on CASI data. According to various land types, pixel classifications is used for forest, grassland, bare land and building lands; in-situ observations and investigations are used for different crops. Dataset contains: land types, including maize, leek, poplar trees, cauliflower, bell pepper, potatoes, endive sprout, orchard, watermelon, kidney bean, pear orchard, shadow, and non-vegetation, except for 14 others which are not classified. Observation site: core experimental areas with 5*5 matrix structure in the middle reaches of the Heihe river basin Date: From 25 June in 2012 (UTC+8) on.

2019-09-15

HiWATER: Thermal-Infrared hyperspectral radiometer (30th, June, 2012)

On 30 June 2012 (UTC+8), TASI sensor carried by the Harbin Y-12 aircraft was used in a visible near Infrared hyperspectral airborne remote sensing experiment, which is located in the observation experimental area (30×30 km), Linze region and Heihe riverway. The relative flight altitude is 2500 meters. The wavelength of TASI is 8-11.5 μm with a spatial resolution of 3 meters. Through the ground sample points and atmospheric data, the data are recorded in surface radiance processed by geometric correction and atmospheric correction. Land surface temperature (LST) data was retrieved by temperature/emissivity separation algorithm.

2019-09-15

HiWATER: Airborne LiDAR-DEM data production in Tianlaochi catchment

On 25 July 2012, a Leica ALS70 airborne laser scanner boarded on the Y-12 aircraft was used to obtain the point cloud data. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 4800 m with the point cloud density 1 points per square meter. Aerial LiDAR-DEM was obtained through parameter calibration, automatic classification of point cloud density and manual editing.

2019-09-15